

Algebraic and geometric properties of minimal tensor rank decompositions

Alessandro Oneto (U. Trento)

Finanziato
dall'Unione europea
NextGenerationEU

Ministero
dell'Università
e della Ricerca

Italiadomani
FONDO NAZIONALE
DI RIPRESA E RESILIANZA

UNIVERSITÀ
DI TRENTO

Ranks and zero-dimensional schemes

$X \subset \mathbb{P}^N$: projective irreducible variety

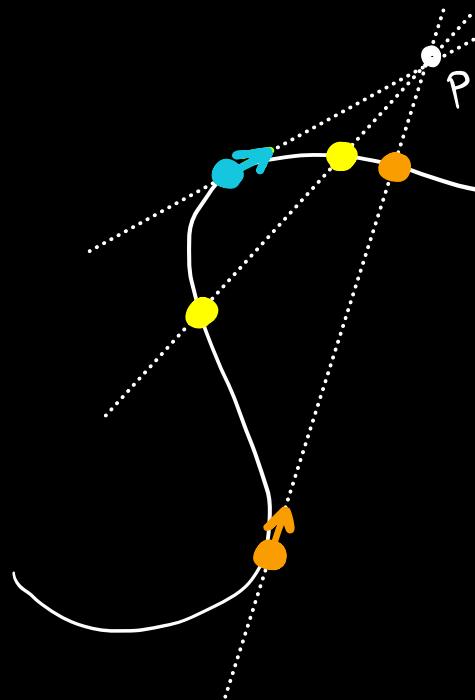
$p \in \mathbb{P}^N$

X-Rank

$$\text{rk}_X(p) = \min_r \{p \in \langle x_1, \dots, x_r \rangle : x_i \in X\}$$

Cactus **X**-Rank

$$\text{crk}_X(p) = \min_r \{p \in \langle Z \rangle : Z \subset X, Z \text{ is 0-dim with } \text{len}(Z) = r\}$$



Ranks and zero-dimensional schemes

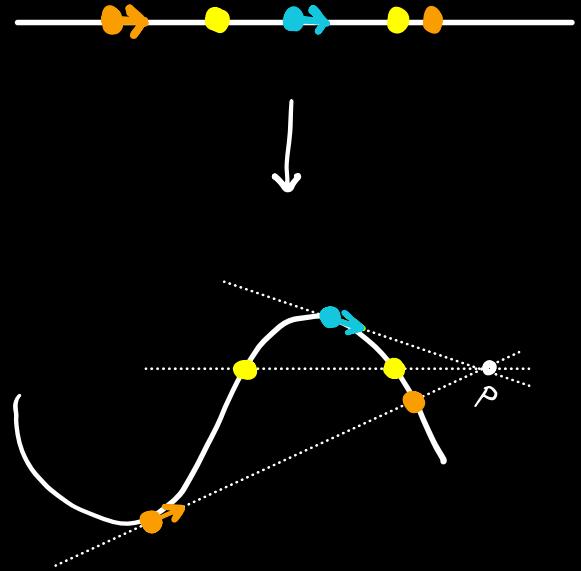
$Y \subset \mathbb{P}^n$: projective irreducible variety \mathcal{L} : line bundle
 $\phi_{\mathcal{L}} : Y \rightarrow \mathbb{P}(H^0(Y, \mathcal{L})^{\vee}) = \mathbb{P}^N$ $X = \phi_{\mathcal{L}}(Y) \subset \mathbb{P}^N$

X -Rank

$$\text{rk}_X(p) = \min_r \{p \in \langle \phi_{\mathcal{L}}(x_1), \dots, \phi_{\mathcal{L}}(x_r) \rangle : x_i \in Y\}$$

Cactus X -Rank

$$\text{crk}_X(p) = \min_r \{p \in \langle \phi_{\mathcal{L}}(Z) \rangle : Z \subset Y, Z \text{ is 0-dim with } \text{len}(Z) = r\}$$



Ranks and zero-dimensional schemes

$\nu_d(\mathbb{P}^n)$: degree- d Veronese variety

$$\nu_d : \mathbb{P}(\text{Sym}^1 \mathbb{C}^{n+1}) \rightarrow \mathbb{P}(\text{Sym}^d \mathbb{C}^{n+1}), \quad [L] \mapsto [L^d]$$

Rank

$$\text{rk}(F) = \min_r \{F \in \langle L_1^d, \dots, L_r^d \rangle \ : \ L_i \in \text{Sym}^1 \mathbb{C}^{n+1}\}$$

Cactus Rank

$$\text{crk}(p) = \min_r \{F \in \langle \nu_d(Z) \rangle \ : \ Z \subset \mathbb{P}^n, \ Z \text{ is 0-dim with } \text{len}(Z) = r\}$$



Ranks and zero-dimensional schemes

$\underline{\nu}_1(\mathbb{P}(\mathbb{C}^{\underline{n}}))$: Segre variety $\underline{n} = (n_1, \dots, n_d)$

$\underline{\nu}_1 : \mathbb{P}(\mathbb{C}^{\underline{n}}) \rightarrow \mathbb{P}(\mathbb{C}^{\otimes \underline{n}}), \quad ([v_1], \dots, [v_d]) \rightarrow [v_1 \otimes \dots \otimes v_d]$

Rank

$\text{rk}(T) = \min_r \{F \in \langle \underline{\nu}_1(A_1), \dots, \underline{\nu}_1(A_r) \rangle \ : \ A_i = (v_{i,1}, \dots, v_{i,d}) \in \mathbb{P}(\mathbb{C}^{\underline{n}})\}$

Cactus Rank

$\text{crk}(p) = \min_r \{F \in \langle \underline{\nu}_1(Z) \rangle \ : \ Z \subset \mathbb{P}(\mathbb{C}^{\underline{n}}), \ Z \text{ is 0-dim with } \text{len}(Z) = r\}$

Ranks and zero-dimensional schemes

$$F \in \text{Sym}^d \mathbb{C}^{n+1}$$

◦ = action by derivation

$$\text{Ann}(F) = \{G : G \circ F = 0\}$$

A polarity Lemma

[Iarrobino-Kanev, Gallet-Ranestad-Villamizar, Gałazka]

The following are equivalent:

- i. $F \in \langle \nu_d(Z) \rangle$
- ii. $I(Z) \subset \text{Ann}(F)$

If so, we say that Z is **apolar** to F

**We study rank / cactus rank / additive decompositions of F
by looking at 0-dimensional schemes apolar to F**

Ranks and zero-dimensional schemes

$$F \in \text{Sym}^d \mathbb{C}^{n+1}$$

Questions

- What is the rank / cactus rank of F ?
- Can we exhibit a minimal decomposition of F ?
- **How do minimal decompositions looks like?**
I.e., how do minimal apolar schemes look like?

Global properties: Varieties of Sums of Powers

$$F \in \text{Sym}^d \mathbb{C}^{n+1} \quad r \in \mathbb{N}$$

[Ranestad-Schreyer]

$$\text{VSP}_r(F) = \overline{\{ \{[L_1], \dots, [L_r]\} : F \in \langle L_1^d, \dots, L_r^d \rangle \}} \subset \text{Hilb}_r(\mathbb{P}^n)$$

Examples

Considering generic forms:

- For $n = 2$, $\text{VSP}_6(F)$ is a smooth Fano 3-fold of degree 22 [Mukai]
- For $n = 4$, $\text{VSP}_8(F)$ is a smooth Fano 5-fold of degree 660 [Ranestad-Schreyer]

Note: cases corresponding to defective Veronese varieties

Global properties: Regularity and Hilbert Function

$$F \in \text{Sym}^d \mathbb{C}^{n+1}$$

Question

How do **Hilbert functions** of apolar sets of points of minimal cardinality look like?

Which **regularities** can be attained?

Bernard ones asked

Can you provide an explicit example of F with apolar sets of points of minimal cardinality with different Hilbert functions and different regularities?

Global properties: Regularity and Hilbert Function

Binary Forms

[Sylvester]

$F \in \text{Sym}^d \mathbb{C}^2$. Then, $\text{Ann}(F) = (G_1, G_2)$

with $\deg(G_1) \leq \deg(G_2)$ and $\deg(G_1) + \deg(G_2) = \deg(F) + 2$

- If G_1 is square-free: $\text{rk}(F) = \deg(G_1)$ and minimal decompositions are given by roots of G_1
- Otherwise, $\text{rk}(F) = \deg(G_2)$ and minimal decompositions are given by roots of square-free forms $HG_1 + \lambda G_2$

$$\deg(H) = \deg(G_2) - \deg(G_1), \lambda \in \mathbb{C}$$

Global properties: Regularity and Hilbert Function

Monomials

[Carlini-Catalisano-Geramita, Buczynska-Buczynski-Teitler]

$M = x_0^{a_0} \cdots x_n^{a_n}$, $a_0 \leq a_1 \leq \cdots \leq a_n$. Then, $\text{Ann}(M) = (x_0^{a_0+1}, \dots, x_n^{a_n+1})$.

$$\text{rk}(M) = \frac{1}{a_0 + 1} \prod_{i=1}^n (a_i + 1)$$

and

all minimal decompositions are complete intersections of degrees $(a_1 + 1, \dots, a_n + 1)$

Abuse of notation: $\text{Ann}(M)$ and M lives in different polynomial rings which are “dual” with respect to the apolar action

Global properties: Regularity and Hilbert Function

Examples

[Angelini-Chiantini-Oneto]

We construct

- Ternary form of degree 10 and rank 22 which admits different decompositions with different Hilbert function
Note: 22 is the generic rank
- Ternary form of degree 13 and rank 30 which admits different decompositions with different regularity
Note: 30 is subgeneric rank

Tools

[Angelini-Chiantini, Angelini-Chiantini-Vannieuwenhoven]

Liaison Theory and Cayley-Bacharach properties

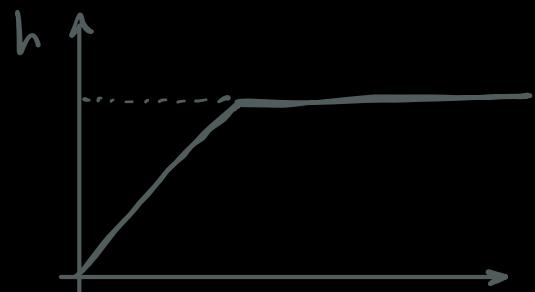
They provide identifiability criteria for specific tensors

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

1. A : set of 12 general points in \mathbb{P}^2



0 1 2 3 4 5

h_A : 1 3 6 9 12 12 ...

Δh_A : 1 2 3 3 3 -

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

1. A : set of 12 general points in \mathbb{P}^2
2. Link A through a complete intersection $X = A \cup Z_1$ of type (6,7)

	0	1	2	3	4	5	6	7	8	9	10	11
Δh_X :	1	2	3	4	5	6	6	5	4	3	2	1
Δh_A :								3	3	3	2	1
Δh_{Z_1} :	1	2	3	4	5	6	6	2	1			

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

1. A : set of 12 general points in \mathbb{P}^2
2. Link A through a complete intersection $X = A \cup Z_1$ of type (6,7)
3. Link Z_1 through a complete intersection $Y = Z_1 \cup Z_2$ of type (6,10)

0	1	2	3	4	5	6	6	6	6	5	4	3	2	1	
$\Delta h_y :$	1	2	3	4	5	6	6	6	6	5	4	3	2	1	
$\Delta h_{Z_1} :$							1	2	6	6	5	4	3	2	1
$\Delta h_{Z_2} :$	1	2	3	4	5	6	5	4							

Global properties: Regularity and Hilbert Function

[Angelini-Chiantini]

Example 1

$$\dim \langle \nu_d(Z_1) \rangle \cap \langle \nu_d(Z_2) \rangle = \text{len}(Z_1 \cap Z_2) - 1 + h_{Z_1 \cup Z_2}^1(d)$$

1. A : set of 12 general points in \mathbb{P}^2

$$h_Z^1(d) = \text{len}(Z) - h_Z(d) = \sum_{j=d+1}^{\infty} \Delta h_Z(i)$$

2. Link A through a complete intersection $X = A \cup B$ of type (6,7)

3. Link Z_1 through a complete intersection $Y = Z_1 \cup Z_2$ of type (6,10)

4. There exists a degree-13 polynomial $[F] \in \langle \nu_{13}(Z_1) \rangle \cap \langle \nu_{13}(Z_2) \rangle$

We need to show that it has indeed rank equal to 30

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Δh_Y :	1	2	3	4	5	6	6	6	6	5	4	3	2	1	
Δh_{Z_1} :							1	2	6	6	5	4	3	2	1
Δh_{Z_2} :	1	2	3	4	5	6	5	4							

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

Assume first that $Z' \cap Z_1 = \emptyset$

$\Delta h_{Z \cup Z_1} :$

$\Delta h_{Z_1} :$ 1 2 3 4 5 6 6 2 1

$\Delta h_{Z'} :$

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

Assume first that $Z' \cap Z_1 = \emptyset$

Up to degree 5, we have maximal growth; i.e., $\sum_{i=0}^5 \Delta h_{Z \cup Z_1}(i) \geq \sum_{i=0}^5 \Delta h_{Z_1}(i) = 21$

$$\Delta h_{Z \cup Z_1} : \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$\Delta h_{Z_1} : \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 6 \quad 2 \quad 1$$

$$\Delta h_Z :$$

Cayley-Bacharach property $CB(d) : \forall p \in Z \forall F \in I(Z \setminus p)_d \Rightarrow F \in I(Z)_d$

Global properties: Regularity and Hilbert Function

Proposition

[Angelini-Chiantini]

If A non-redundant and apolar to $F \in \text{Sym}^d(\mathbb{C}^{n+1})$

and B apolar to F such that $A \cap B = \emptyset$, then $Z = A \cup B$ satisfies $CB(d)$. [Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

$$CB(d) \Rightarrow \sum_{j=0}^i \Delta h_{Z'}(j) \geq \sum_{j=0}^i \Delta h_{Z'}(d+1-j)$$

Z' satisfies Cayley-Bacharach property $CB(13)$

[Angelini-Chiantini]

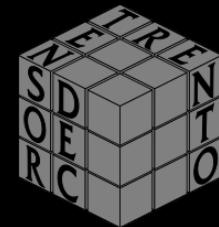
0	1	2	3	4	5	6	7	8	9	10	11	12	13
$\Delta h_{Z \cup Z_1}$:	1	2	3	4	5	6							

Δh_{Z_1} :	1	2	3	4	5	6	6	2	1				
--------------------	---	---	---	---	---	---	---	---	---	--	--	--	--

$\Delta h_{Z'}$:													
-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--

14
≥ 1

Global properties: Regularity and Hilbert Function



Example 1

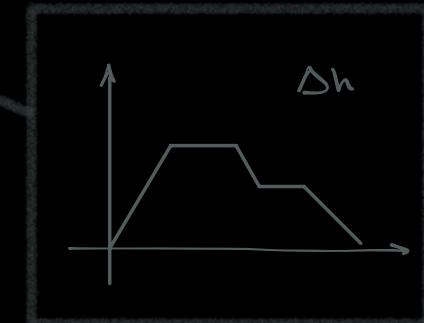
[Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

Assume first that $Z' \cap Z_1 = \emptyset$

We cannot have plateau below 6

[Davis]

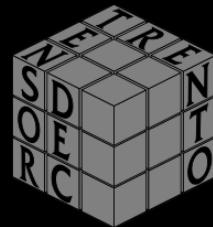


$$\Delta h_{Z \cup Z_1} : \begin{array}{cccccccccccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & \geq 5 & \geq 4 & \geq 3 & \geq 2 & \geq 1 \end{array}$$

$$\Delta h_{Z_1} : \begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 6 & 2 & 1 \end{array}$$

$$\Delta h_{Z'} :$$

Global properties: Regularity and Hilbert Function



Example 1

[Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

Assume first that $Z' \cap Z_1 = \emptyset$

Contradiction: $\text{len}(Z') \geq 30$

$$\Delta h_{Z \cup Z_1} : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ \geq 5 \ \geq 4 \ \geq 3 \ \geq 2 \ \geq 1$$

$$\Delta h_{Z_1} : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 6 \ 2 \ 1$$

$$\Delta h_Z : \boxed{\geq 4 \ \geq 5 \ \geq 6 \ \geq 5 \ \geq 4 \ \geq 3 \ \geq 2 \ \geq 1}$$

Global properties: Regularity and Hilbert Function

Example 1

[Angelini-Chiantini-Oneto]

Assume that there is a scheme Z' of $\text{len}(Z') \leq 29$ apolar to the same F

If $Z' \cap Z_1 \neq \emptyset$, then we can reduce to the previous case:

$$Z_1 = \{L_1, \dots, L_{30}\} \quad Z' = \{L_1, \dots, L_k, M_{k+1}, \dots, M_{30}\}$$

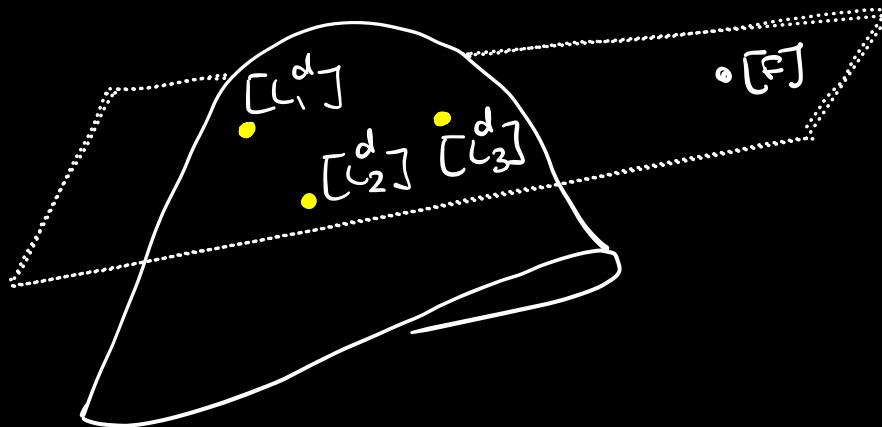
$$F = \sum_{i=1}^{30} a_i L_i^{13} = \sum_{i=1}^k b_i L_i^{13} + \sum_{i=k+1}^{30} c_i M_i^{13}$$

Then, we can replace Z' with $Z' \setminus (Z_1 \cap Z')$

Global properties: Regularity and Hilbert Function

Trivial Remark

If Z is a *minimal* set of reduced points spanning $F \in \text{Sym}^d(\mathbb{C}^{n+1})$,
then it is regular in degree d



(affine dimension)

$$\dim \langle \nu_d(Z) \rangle = h_Z(d)$$

If Z is not d -regular, then $\{[L_1^d], \dots, [L_r^d]\}$ are linearly independent

Global properties: Regularity and Hilbert Function

Trivial Remark

If Z is a *minimal* set of reduced points spanning $F \in \text{Sym}^d(\mathbb{C}^{n+1})$, then it is regular in degree d

Question

[Bernardi-Taufer, Bernardi-Oneto-Taufer]

Given $F \in \text{Sym}^d \mathbb{C}^{n+1}$, can we bound the regularity of any *minimal* apolar schemes?

In particular, **can we prove that it is smaller than the degree d of the polynomial?**

note: this question is relevant to understand the complexity of decomposition algorithms

Remark

Irredundant (i.e., minimal by inclusion) instead of *minimal length* is not enough!

Global properties: Regularity and Hilbert Function

Example

[Bernardi-Oneto-Taufer]

$$F = x_0G_1 + x_1G_2$$

with $G_1 = 10x_0^3 - 4x_0^2x_1 + 4x_0^2x_2 - 4x_0x_1^2 - 8x_0x_1x_2 - 3x_0x_2^2 - 8x_1^3 - 4x_2^3$,
 $G_2 = 5x_0^3 + 9x_0x_1^2 - 5x_1^3 - 7x_1^2x_2 + 6x_1x_2^2 - x_2^3$.

The 0-dimensional scheme evincing this decomposition has Hilbert function

$$\begin{matrix} \curvearrowleft & 1 & 3 & 6 & 10 & 11 & 12 & 12 & \dots \end{matrix}$$

Given $F = L^{d-k}G$ we consider the scheme defined by $\text{Ann}(g)$ where $g = G|_{L=1}$

regarded as a projective 0-dimensional scheme supported at $[L]$. **This scheme is apolar to F**

Given $F = \sum_{i=1}^r L_i^{d-k_i}G_i$ we construct an **apolar scheme** summand by summand

Global properties: Regularity and Hilbert Function

Example

[Bernardi-Oneto-Taufer]

$$F = x_0G_1 + x_1G_2$$

with
$$G_1 = 10x_0^3 - 4x_0^2x_1 + 4x_0^2x_2 - 4x_0x_1^2 - 8x_0x_1x_2 - 3x_0x_2^2 - 8x_1^3 - 4x_2^3,$$

$$G_2 = 5x_0^3 + 9x_0x_1^2 - 5x_1^3 - 7x_1^2x_2 + 6x_1x_2^2 - x_2^3.$$

The 0-dimensional scheme evincing this decomposition has Hilbert function

1 3 6 10 11 12 12 ...

but it is **irredundant**:

- If there was, it should correspond to a decomposition $F = X_0Q_1 + X_1Q_2$

$$\text{but then, } X_0(G_1 - Q_1) = X_1(G_2 - Q_2)$$

Global properties: Regularity and Hilbert Function

Example

[Bernardi-Oneto-Taufer]

$$F = x_0G_1 + x_1G_2$$

with
$$G_1 = 10x_0^3 - 4x_0^2x_1 + 4x_0^2x_2 - 4x_0x_1^2 - 8x_0x_1x_2 - 3x_0x_2^2 - 8x_1^3 - 4x_2^3,$$

$$G_2 = 5x_0^3 + 9x_0x_1^2 - 5x_1^3 - 7x_1^2x_2 + 6x_1x_2^2 - x_2^3.$$

The 0-dimensional scheme evincing this decomposition has Hilbert function

1 3 6 10 11 12 12 ...

but it is **irredundant**:

- If there was, it should correspond to a decomposition $F = X_0(G_1 - X_1T) + X_1(G_2 + X_0T)$
- We checked **computationally** that it has to be $T = \lambda X_0 X_1$

Global properties: Regularity and Hilbert Function

Example

[Bernardi-Oneto-Taufer]

$$F = x_0G_1 + x_1G_2$$

with
$$G_1 = 10x_0^3 - 4x_0^2x_1 + 4x_0^2x_2 - 4x_0x_1^2 - 8x_0x_1x_2 - 3x_0x_2^2 - 8x_1^3 - 4x_2^3,$$

$$G_2 = 5x_0^3 + 9x_0x_1^2 - 5x_1^3 - 7x_1^2x_2 + 6x_1x_2^2 - x_2^3.$$

The 0-dimensional scheme evincing this decomposition has Hilbert function

1 3 6 10 11 12 12 ...

but it is **irredundant**:

- If there was, it should correspond to a decomposition $F = X_0(G_1 - X_1T) + X_1(G_2 + X_0T)$
- We checked computationally that it has to be $T = \lambda X_0 X_1$
- All such decompositions are evinced by the same 0-dimensional scheme

Local properties: Decomposition Loci

Question

Given $F \in \text{Sym}^d \mathbb{C}^{n+1}$, **which linear forms may appear in a minimal decomposition?**

Given $T \in \mathbb{C}^n$, **which rank-one tensors may appear in a minimal decomposition?**

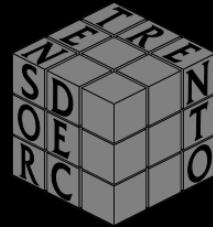
TensorGame - a reinforcement learning approach

[Fawzi et al.]

- Start with $T_0 := T$
- At each step t , the player takes a rank-one tensor $v_1 \otimes \cdots \otimes v_d$ and substitutes
$$T_t := T_{t-1} - v_1 \otimes \cdots \otimes v_d$$
- The game ends when $T_t = 0$.

Challenge. Find the optimal way, i.e., conclude in a number of steps equal to $\text{rk}(T)$

Local properties: Decomposition Loci



Question

Given $F \in \text{Sym}^d \mathbb{C}^{n+1}$, which linear forms may appear in a minimal decomposition?

[Carlini-Catalisano-Oneto]

The **decomposition locus** of F is

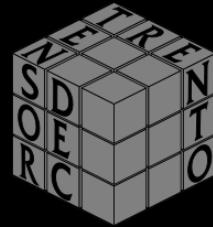
$$\mathcal{D}(F) = \{[L] \in \mathbb{P}\text{Sym}^1(\mathbb{C}^{n+1}) : \text{rk}(F - \lambda L^d) = \text{rk}(F) - 1 \text{ for some } \lambda\}$$

The **forbidden locus** of F is the complement of the decomposition locus

$$\mathcal{F}(F) = \mathbb{P}(\text{Sym}^1(\mathbb{C}^{n+1})) \setminus \mathcal{D}(F)$$

note: we always look at them in the concise space

Local properties: Decomposition Loci



Question

Given $T \in \mathbb{C}^n$, which rank-one tensors may appear in a minimal decomposition?

[Bernardi-Oneto-Santarsiero]

The **decomposition locus** of T is

$$\mathcal{D}(T) = \{([v_1], \dots, [v_d]) \in \mathbb{P}(\mathbb{C}^n) : \text{rk}(T - \lambda v_1 \otimes \dots \otimes v_d) = \text{rk}(T) - 1 \text{ for some } \lambda\}$$

The **forbidden locus** of T is the complement of the decomposition locus

$$\mathcal{F}(T) = \mathbb{P}(\mathbb{C}^n) \setminus \mathcal{D}(T)$$

note: we always look at them in the concise space

Local properties: Decomposition Loci

[Carlini-Catalisano-Oneto]

We compute the decomposition / forbidden loci of homogeneous polynomials such as: binary forms, monomials, plane cubics, other families of polynomials

Local properties: Decomposition Loci

[Carlini-Catalisano-Oneto]

We compute the decomposition / forbidden loci of homogeneous polynomials such as: binary forms, monomials, plane cubics, other families of polynomials

[Mourrain-Oneto]

We **perform the TensorGame** for homogeneous polynomials of **rank at most 5**
In particular, we get a **classification of homogeneous polynomials** of rank at most 5
in terms of algebraic properties of apolar ideals
and we **describe how to construct a minimal decomposition**

Local properties: Decomposition Loci

Binary Forms

[Carlini-Catalisano-Oneto]

$F \in \text{Sym}^d \mathbb{C}^2$. Then, $\text{Ann}(F) = (G_1, G_2)$

with $\deg(G_1) \leq \deg(G_2)$ and $\deg(G_1) + \deg(G_2) = \deg(F) + 2$

- $\text{rk}(F) < \lceil (d+1)/2 \rceil$ then $\mathcal{D}(F) =$ set of roots of G_1
- $\text{rk}(F) > \lceil (d+1)/2 \rceil$ then $\mathcal{F}(F) =$ set of roots of G_1
- $\text{rk}(F) = \lceil (d+1)/2 \rceil$ and d is odd: then $\mathcal{D}(F) =$ set of roots of G_1
- $\text{rk}(F) = \lceil (d+1)/2 \rceil$ and d is even: then $\mathcal{F}(F) =$ non-empty finite set of points

Local properties: Decomposition Loci

Binary Forms

[Carlini-Catalisano-Oneto]

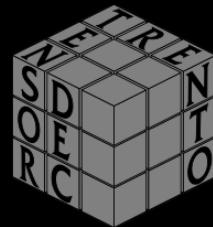
$F \in \text{Sym}^d \mathbb{C}^2$. Then, $\text{Ann}(F) = (G_1, G_2)$

with $\deg(G_1) \leq \deg(G_2)$ and $\deg(G_1) + \deg(G_2) = \deg(F) + 2$

- $\text{rk}(F) < \lceil (d+1)/2 \rceil$ then $\mathcal{D}(F) = \text{set of roots of } G_1$

This is the case G_1 is square-free and it is the only generator of its degree

Local properties: Decomposition Loci



Binary Forms

[Carlini-Catalisano-Oneto]

$F \in \text{Sym}^d \mathbb{C}^2$. Then, $\text{Ann}(F) = (G_1, G_2)$

with $\deg(G_1) \leq \deg(G_2)$ and $\deg(G_1) + \deg(G_2) = \deg(F) + 2$

- $\text{rk}(F) > \lceil (d+1)/2 \rceil$ then $\mathcal{F}(F) = \text{set of roots of } G_1$

In this case, G_1 is not square-free. Let L be any factor of G_1 .

G_1, G_2 have no common factors because $\text{Ann}(F)$ is Gorenstein in codimension 2

hence, all polynomials of $\text{Ann}(F)$ divisible by L are multiples of G_1 and then not square-free

Local properties: Decomposition Loci

Monomials

[Carlini-Catalisano-Geramita]

$M = x_0^{a_0} \cdots x_n^{a_n}$, $a_0 \leq a_1 \leq \cdots \leq a_n$. Then, $\text{Ann}(M) = (x_0^{a_0+1}, \dots, x_n^{a_n+1})$.

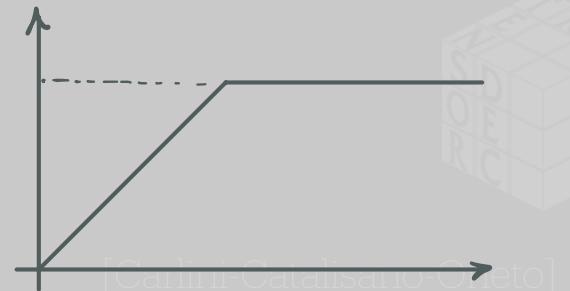
$$\text{rk}(M) = \frac{1}{a_0 + 1} \prod_{i=1}^n (a_i + 1)$$

Idea of proof. Assume Z apolar and minimal (i.e., computes the rank) for M .

Consider $Z' := Z \setminus (Z \cap \{x_0 = 0\})$. Then, x_0 is a non-zero divisor for $I(Z)$.

$$I(Z') + (x_0) = I(Z) : (x_0) + (x_0) \subset \text{Ann}(M) : (x_0) + (x_0) = (x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1})$$

- Given a zero-dimensional scheme $Z \subset \mathbb{P}^n$,
the Hilbert function is strictly increasing until it reaches $\text{len}(Z)$



Monomials

- If L is a non-zero divisor for Z , i.e., $Z \cap \{L = 0\} = \emptyset$, then

the first difference of the Hilbert function of Z is equal to the Hilbert function of the quotient of $I(Z) + (L)$

$$\#(Z) = \sum_{i=0}^{\infty} \Delta h_Z(i) = \frac{1}{\dim \mathbb{C}[x_0, \dots, x_n]/I(Z) + (L)} \prod_{i=1}^n (a_i + 1)$$

Idea of proof. Assume Z apolar and minimal (i.e., computes the rank) for M .

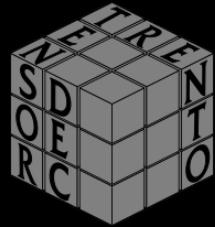
Consider $Z' := Z \setminus (Z \cap \{x_0 = 0\})$. Then, x_0 is a non-zero divisor for $I(Z)$.

$$I(Z') + (x_0) = I(Z) : (x_0) + (x_0) \subset \text{Ann}(M) : (x_0) + (x_0) = (x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1})$$

Then, from basic properties of Hilbert functions of 0-dimensional schemes:

$$\#(Z') \geq \dim \mathbb{C}[x_0, \dots, x_n]/(x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1}) = (a_1 + 1) \cdots (a_n + 1)$$

Local properties: Decomposition Loci



Monomials

[Carlini-Catalisano-Geramita]

$M = x_0^{a_0} \cdots x_n^{a_n}$, $a_0 \leq a_1 \leq \cdots \leq a_n$. Then, $\text{Ann}(M) = (x_0^{a_0+1}, \dots, x_n^{a_n+1})$.

$$\text{rk}(M) = \frac{1}{a_0 + 1} \prod_{i=1}^n (a_i + 1)$$

Idea of proof. Assume Z apolar and minimal (i.e., computes the rank) for M .

Consider $Z' := Z \setminus (Z \cap \{x_0 = 0\})$. Then, x_0 is a non-zero divisor for $I(Z)$.

$$I(Z') + (x_0) = I(Z) : (x_0) + (x_0) \subset \text{Ann}(M) : (x_0) + (x_0) = (x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1})$$

Then, from basic properties of Hilbert functions of 0-dimensional schemes:

$$\#(Z') \geq \dim \mathbb{C}[x_0, \dots, x_n]/(x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1}) = (a_1 + 1) \cdots (a_n + 1)$$

In particular: $Z = Z'$, namely **the hyperplane $\{x_0 = 0\}$ is forbidden**.

Local properties: Decomposition Loci

Monomials

[Carlini-Catalisano-Oneto]

$M = x_0^{a_0} \cdots x_n^{a_n}$, $a_0 = a_1 = \dots = a_m < a_{m+1} \leq \dots \leq a_n$. Then,

$$\mathcal{F}(M) = \{x_0 \cdots x_m = 0\}$$

Idea of proof. Assume Z apolar and minimal (i.e., computes the rank) for M .

Consider $Z' := Z \setminus (Z \cap \{x_0 = 0\})$. Then, x_0 is a non-zero divisor for $I(Z)$.

$$I(Z') + (x_0) = I(Z) : (x_0) + (x_0) \subset \text{Ann}(M) : (x_0) + (x_0) = (x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1})$$

Then, from basic properties of Hilbert functions of 0-dimensional schemes:

$$\#(Z') \geq \dim \mathbb{C}[x_0, \dots, x_n]/(x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1}) = (a_1 + 1) \cdots (a_n + 1)$$

In particular: $Z = Z'$, namely **the hyperplane $\{x_0 = 0\}$ is forbidden**.

Local properties: Decomposition Loci

[Bernardi-Oneto-Santarsiero]

We compute the decomposition / forbidden loci of:

- matrices
- tangential tensors
- tensors which are in $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^n$ by explicit computations from the 26 normal forms
(finite number of orbits wrt $\mathbf{GL} \times \mathbf{GL} \times \mathbf{GL}$)

Local properties: Decomposition Loci

Tangential Tensors

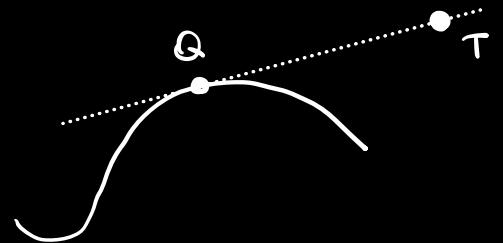
[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes w_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

is a tensor lying on the tangent space to the Segre variety at $Q = [v_1 \otimes \cdots \otimes v_d]$.

Then,

$$\mathcal{F}(T) = \{[Q]\}$$



Note: for the symmetric case, this follows from the previous examples since

$T = xy^{d-1}$ belongs to the tangent to the Veronese variety at $Q = [y^d]$

and indeed the forbidden locus is given by $\{x = 0\}$

Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes w_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 1. $[Q] \in \mathcal{F}(T)$.

$T - \lambda Q$ is still tangential and concise for all $\lambda \neq 0$, hence it has the same rank.

Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes w_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 2. The result holds for $d = 3$.

T has rank equal to 4.

The variety of rank-3 tensors in $(\mathbb{C}^2)^{\otimes 3}$ is defined by the Cayley hyperdeterminant.

Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes v_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 3. If $P = p_1 \otimes \cdots \otimes p_d$ with $[p_i] \neq [v_i]$, then $P \notin \mathcal{F}(T)$.

Without loss of generalities: $v_i = (1 : 0)$ and $p_i = (p_i : 1)$

Consider the curve $f = f_1 \times \cdots \times f_d : \mathbb{P}^1 \rightarrow (\mathbb{P}^1)^{\times d}$, $f_i : (x : y) \mapsto (x + p_i y : y)$

Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes v_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 3. If $P = p_1 \otimes \cdots \otimes p_d$ with $[p_i] \neq [v_i]$, then $P \notin \mathcal{F}(T)$.

Without loss of generalities: $v_i = (1 : 0)$ and $p_i = (p_i : 1)$

Consider the curve $f = f_1 \times \cdots \times f_d : \mathbb{P}^1 \rightarrow (\mathbb{P}^1)^{\times d}$, $f_i : (x : y) \mapsto (x + p_i y : y)$

It is a degree- d Rational Normal Curve passing through Q whose tangent line at Q contains T

and passing through P . We conclude by the previous results on binary forms or monomials.



Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes v_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 4. If $P = p_1 \otimes \cdots \otimes p_d$ with $[p_i] = [v_i]$ for $i = 1, \dots, m$, ($m < d$)

If $d - m \geq 3$:

$$T + \lambda P = \sum_{i=1}^m v_1 \otimes \cdots \otimes v_i \cdots \otimes v_d + (v_1 \otimes \cdots \otimes v_m) \otimes T'$$

$$T' = \sum_{i=m+1}^d v_{m+1} \otimes \cdots \otimes v_i \cdots \otimes v_d + \lambda p_{m+1} \otimes \cdots \otimes p_d \text{ which satisfies the assumptions of Step 3.}$$

Local properties: Decomposition Loci

Tangential Tensors

[Bernardi-Oneto-Santarsiero]

$$T = v_1 \otimes v_2 \otimes \cdots \otimes w_d + \dots + v_1 \otimes w_2 \otimes \cdots \otimes v_d + w_1 \otimes v_2 \otimes \cdots \otimes v_d$$

$$\mathcal{F}(T) = \{[Q]\}$$

Proof.

Step 4. If $P = p_1 \otimes \cdots \otimes p_d$ with $[p_i] = [v_i]$ for $i = 1, \dots, m$, ($m < d$)

If $d - m < 3$:

$$T + \lambda P = \sum_{i=1}^{d-3} v_1 \otimes \cdots \otimes w_i \cdots \otimes v_d + (v_1 \otimes \cdots \otimes v_{d-3}) \otimes T'$$

$$T' = \sum_{i=d-2}^d v_{d-2} \otimes \cdots \otimes w_i \cdots \otimes v_d + \lambda p_{d-2} \otimes p_{d-1} \otimes p_d \text{ which satisfies the assumptions of Step 2.}$$

A wide-angle, high-angle aerial photograph of the city of Nice, France. The image captures the iconic Promenade des Anglais, a long, wide boulevard running along the coastline. The beach is visible on the left, filled with people and umbrellas. The city skyline is filled with numerous buildings, mostly with red-tiled roofs, stretching towards the horizon. In the background, the mountains of the Alpes-Maritimes are visible under a clear blue sky.

Thank you for the attention

**Merci Bernard
et bon anniversaire!**