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Algebraic and geometric properties  
of minimal tensor rank decompositions

  



Ranks and zero-dimensional schemes 

 : projective irreducible variety 
 

-Rank  

 

Cactus -Rank  

X ⊂ ℙN

p ∈ ℙN

X

rkX(p) = min
r

{p ∈ ⟨x1, …, xr⟩ : xi ∈ X}

X

crkX(p) = min
r

{p ∈ ⟨Z⟩ : Z ⊂ X, Z is 0-dim with len(Z) = r}



Ranks and zero-dimensional schemes 

 : projective irreducible variety      : line bundle 
                    

-Rank  

 

Cactus -Rank  

Y ⊂ ℙn ℒ
ϕℒ : Y → ℙ(H0(Y, ℒ)∨) = ℙN X = ϕℒ(Y) ⊂ ℙN

X

rkX(p) = min
r

{p ∈ ⟨ϕℒ(x1), …, ϕℒ(xr)⟩ : xi ∈ Y}

X

crkX(p) = min
r

{p ∈ ⟨ϕℒ(Z)⟩ : Z ⊂ Y, Z is 0-dim with len(Z) = r}



Ranks and zero-dimensional schemes 

 : degree-  Veronese variety   
               

Rank  

 

Cactus Rank  

νd(ℙn) d
νd : ℙ(Sym1ℂn+1) → ℙ(Symdℂn+1), [L] → [Ld]

rk(F) = min
r

{F ∈ ⟨Ld
1 , …, Ld

r ⟩ : Li ∈ Sym1ℂn+1}

crk(p) = min
r

{F ∈ ⟨νd(Z)⟩ : Z ⊂ ℙn, Z is 0-dim with len(Z) = r}



Ranks and zero-dimensional schemes 

 : Segre variety                    
               

Rank  

 

Cactus Rank  

ν1(ℙ(ℂn)) n = (n1, …, nd)
ν1 : ℙ(ℂn) → ℙ(ℂ⊗n), ([v1], …, [vd]) → [v1 ⊗ ⋯ ⊗ vd]

rk(T) = min
r

{F ∈ ⟨ν1(A1), …, ν1(Ar)⟩ : Ai = (vi,1, …, vi,d) ∈ ℙ(ℂn)}

crk(p) = min
r

{F ∈ ⟨ν1(Z)⟩ : Z ⊂ ℙ(ℂn), Z is 0-dim with len(Z) = r}



Ranks and zero-dimensional schemes 

                                               = action by derivation 
                                    

Apolarity Lemma                                                                          [Iarrobino-Kanev,  Gallet-Ranestad-Villamizar,  Gałazka] 

The following are equivalent: 
i.  

ii.  

If so, we say that  is apolar to  

We study rank / cactus rank / additive decompositions of  
by looking at 0-dimensional schemes apolar to 

F ∈ Symdℂn+1 ∘
Ann(F) = {G : G ∘ F = 0}

F ∈ ⟨νd(Z)⟩
I(Z) ⊂ Ann(F)

Z F

F
F



Ranks and zero-dimensional schemes 

 

Questions 

• What is the rank / cactus rank of ? 

• Can we exhibit a minimal decomposition of ? 
• How do minimal decompositions looks like?  

I.e., how do minimal apolar schemes look like? 

F ∈ Symdℂn+1

F
F



Global properties: Varieties of Sums of Powers 

 

[Ranestad-Schreyer] 

 

Examples 
Considering generic forms: 

• For ,  is a smooth Fano 3-fold of degree 22                                      [Mukai] 

• For ,  is a smooth Fano 5-fold of degree 660                [Ranestad-Schreyer] 

 Note: cases corresponding to defective Veronese varieties

F ∈ Symdℂn+1 r ∈ ℕ

VSPr(F) = {{[L1], …, [Lr]} : F ∈ ⟨Ld
1 , …, Ld

r ⟩} ⊂ Hilbr(ℙn)

n = 2 VSP6(F)
n = 4 VSP8(F)



Global properties: Regularity and Hilbert Function 

 

Question 
How do Hilbert functions of apolar sets of points of minimal cardinality look like? 
Which regularities can be attained? 

Bernard ones asked 

Can you provide an explicit example of  with apolar sets of points of minimal 
cardinality with different Hilbert functions and different regularities?

F ∈ Symdℂn+1

F



Global properties: Regularity and Hilbert Function 

Binary Forms                                                                                                                         [Sylvester] 
. Then,  

 

• If  is square-free:  and  
minimal decompositions are given by roots of  

• Otherwise,  and  
minimal decompositions are given by roots of square-free forms  

F ∈ Symdℂ2 Ann(F) = (G1, G2)
 with  deg(G1) ≤ deg(G2) and  deg(G1) + deg(G2) = deg(F) + 2

G1 rk(F) = deg(G1)
G1

rk(F) = deg(G2)
HG1 + λG2

deg(H) = deg(G2) − deg(G1), λ ∈ ℂ



Global properties: Regularity and Hilbert Function 

Monomials                                                  [Carlini-Catalisano-Geramita,   Buczynska-Buczynski-Teitler] 
. Then, . 

 

and  
all minimal decompositions are complete intersections of degrees  

Abuse of notation:  and  lives in different polynomial rings 
which are “dual” with respect to the apolar action

M = xa0
0 ⋯xan

n , a0 ≤ a1 ≤ ⋯ ≤ an Ann(M) = (xa0+1
0 , …, xan+1

n )

rk(M) = 1
a0 + 1

n

∏
i=1

(ai + 1)

(a1 + 1,…, an + 1)

Ann(M) M



Global properties: Regularity and Hilbert Function 

Examples                                                                                                         [Angelini-Chiantini-Oneto] 
We construct 
• Ternary form of degree 10 and rank 22 which admits different decompositions with 

different Hilbert function                                                                Note: 22 is the generic rank 
• Ternary form of degree 13 and rank 30 which admits different decompositions with 

different regularity                                                                          Note: 30 is subgeneric rank 

Tools                                                                                     [Angelini-Chiantini,  Angelini-Chiantini-Vannieuwenhoven] 

Liaison Theory and Cayley-Bacharach properties                                   
They provide identifiability criteria for specific tensors



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

1.   : set of 12 general points in  A ℙ2

hA : 1 3 6 9 12 12 ⋯
ΔhA : 1 2 3 3 3 −



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

1.   : set of 12 general points in  

2. Link  through a complete intersection  of type (6,7) 

A ℙ2

A X = A ∪ Z1

ΔhX : 1 2 3 4 5 6 6 5 4 3 2 1
ΔhA : 3 3 3 2 1
ΔhZ1

: 1 2 3 4 5 6 6 2 1



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

1.   : set of 12 general points in  

2. Link  through a complete intersection  of type (6,7) 

3. Link  through a complete intersection  of type (6,10) 

A ℙ2

A X = A ∪ Z1

Z1 Y = Z1 ∪ Z2

Δhy : 1 2 3 4 5 6 6 6 6 6 5 4 3 2 1
ΔhZ1

: 1 2 6 6 5 4 3 2 1
ΔhZ2

: 1 2 3 4 5 6 5 4



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

1.   : set of 12 general points in  

2. Link  through a complete intersection  of type (6,7) 

3. Link  through a complete intersection  of type (6,10) 

4. There exists a degree-13 polynomial  
We need to show that it has indeed rank equal to 30 

A ℙ2

A X = A ∪ Z1

Z1 Y = Z1 ∪ Z2

[F] ∈ ⟨ν13(Z1)⟩ ∩ ⟨ν13(Z2)⟩

ΔhY : 1 2 3 4 5 6 6 6 6 6 5 4 3 2 1
ΔhZ1

: 1 2 6 6 5 4 3 2 1
ΔhZ2

: 1 2 3 4 5 6 5 4

[Angelini-Chiantini] 
 dim⟨νd(Z1)⟩ ∩ ⟨νd(Z2)⟩ = len(Z1 ∩ Z2) − 1 + h1

Z1∪Z2
(d)

h1
Z(d) = len(Z) − hZ(d) =

∞

∑
j=d+1

ΔhZ(i)

o i 2 3 4 5 6 7 8 9 io 11 12 13 in



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

Assume first that  

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 = ∅

ΔhZ′ ∪Z1
: 1 2 3 4 5 6 ≥ 6 ≥ 6 ≥ 6 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

ΔhZ1
: 1 2 3 4 5 6 6 2 1

ΔhZ′ 
:



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

Assume first that  

Up to degree 5, we have maximal growth; i.e.,  

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 = ∅

5

∑
i=0

ΔhZ′ ∪Z1
(i) ≥

5

∑
i=0

ΔhZ1
(i) = 21

ΔhZ′ ∪Z1
: 1 2 3 4 5 6 ≥ 6 ≥ 6 ≥ 6 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

ΔhZ1
: 1 2 3 4 5 6 6 2 1

ΔhZ′ 
:



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

Assume first that  

 satisfies Cayley-Bacharach property                 [Angelini-Chiantini] 

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 = ∅

Z′ CB(13)

ΔhZ′ ∪Z1
: 1 2 3 4 5 6 ≥ 6 ≥ 6 ≥ 6 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

ΔhZ1
: 1 2 3 4 5 6 6 2 1

ΔhZ′ 
:

Cayley-Bacharach property     :     

Proposition                                                                                                                                      [Angelini-Chiantini 

If  non-redundant and apolar to  
and  apolar to  such that , then  satisfies . 

CB(d) ∀p ∈ Z ∀F ∈ I(Z ∖ p)d ⇒ F ∈ I(Z)d

A F ∈ Symd(ℂn+1)
B F A ∩ B = ∅ Z = A ∪ B CB(d)

CB(d) ⇒
i

∑
j=0

ΔhZ( j) ≥
i

∑
j=0

ΔhZ(d + 1 − j)



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

Assume first that  

We cannot have plateau below 6       [Davis] 

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 = ∅

ΔhZ′ ∪Z1
: 1 2 3 4 5 6 ≥ 6 ≥ 6 ≥ 6 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

ΔhZ1
: 1 2 3 4 5 6 6 2 1

ΔhZ′ 
:



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

Assume first that  

Contradiction:  

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 = ∅

len(Z′ ) ≥ 30

ΔhZ′ ∪Z1
: 1 2 3 4 5 6 ≥ 6 ≥ 6 ≥ 6 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

ΔhZ1
: 1 2 3 4 5 6 6 2 1

ΔhZ′ 
: ≥ 4 ≥ 5 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

2 3 5 6 7 8 9 12 13



Global properties: Regularity and Hilbert Function 

Example 1                                                                                                       [Angelini-Chiantini-Oneto] 

Assume that there is a scheme  of  apolar to the same  

If , then we can reduce to the previous case: 

 

 

Then, we can replace  with 

Z′ len(Z′ ) ≤ 29 F
Z′ ∩ Z1 ≠ ∅

Z1 = {L1, …, L30} Z′ = {L1, …, Lk, Mk+1, …, M30}

F =
30

∑
i=1

aiL13
i =

k

∑
i=1

biL13
i +

30

∑
i=k+1

ciM13
i

Z′ Z′ ∖ (Z1 ∩ Z′ )



Global properties: Regularity and Hilbert Function 

Trivial Remark 

If  is a minimal set of reduced points spanning ,  

then it is regular in degree  

(a"ine dimension) 

 

If  is not -regular, then are linearly independent

Z F ∈ Symd(ℂn+1)
d

dim⟨νd(Z)⟩ = hZ(d)
Z d {[Ld

1], …, [Ld
r ]}

Altinate



Global properties: Regularity and Hilbert Function 

Trivial Remark 

If  is a minimal set of reduced points spanning , then it is regular in degree  

Question                                                                                   [Bernardi-Taufer,   Bernardi-Oneto-Taufer] 
Given , can we bound the regularity of any minimal apolar schemes? 

In particular, can we prove that it is smaller than the degree  of the polynomial? 
note: this question is relevant to understand the complexity of decomposition algorithms 

Remark 
Irredundant (i.e., minimal by inclusion) instead of minimal length is not enough!

Z F ∈ Symd(ℂn+1) d

F ∈ Symdℂn+1

d



Global properties: Regularity and Hilbert Function 

Example                                                                                                              [Bernardi-Oneto-Taufer] 
  

with    

The 0-dimensional scheme evincing this decomposition has Hilbert function  

 

F = x0G1 + x1G2
G1 = 10x3

0 − 4x2
0 x1 + 4x2

0 x2 − 4x0x2
1 − 8x0x1x2 − 3x0x2

2 − 8x3
1 − 4x3

2 ,
G2 = 5x3

0 + 9x0x2
1 − 5x3

1 − 7x2
1 x2 + 6x1x2

2 − x3
2 .

1 3 6 10 11 12 12 ⋯

Given  we consider the scheme defined by  where   

regarded as a projective 0-dimensional scheme supported at . This scheme is apolar to  

Given ,  we construct an apolar scheme summand by summand

F = Ld−kG Ann(g) g = G |L=1
[L] F

F =
r

∑
i=1

Ld−ki
i Gi



Global properties: Regularity and Hilbert Function 

Example                                                                                                              [Bernardi-Oneto-Taufer] 
  

with    

The 0-dimensional scheme evincing this decomposition has Hilbert function  

 
but it is irredundant:  

• If there was, it should correspond to a decomposition  

but then, 

F = x0G1 + x1G2
G1 = 10x3

0 − 4x2
0 x1 + 4x2

0 x2 − 4x0x2
1 − 8x0x1x2 − 3x0x2

2 − 8x3
1 − 4x3

2 ,
G2 = 5x3

0 + 9x0x2
1 − 5x3

1 − 7x2
1 x2 + 6x1x2

2 − x3
2 .

1 3 6 10 11 12 12 ⋯

F = X0Q1 + X1Q2
X0(G1 − Q1) = X1(G2 − Q2)



Global properties: Regularity and Hilbert Function 

Example                                                                                                              [Bernardi-Oneto-Taufer] 
  

with    

The 0-dimensional scheme evincing this decomposition has Hilbert function  

 
but it is irredundant:  

• If there was, it should correspond to a decomposition  

• We checked computationally that it has to be 

F = x0G1 + x1G2
G1 = 10x3

0 − 4x2
0 x1 + 4x2

0 x2 − 4x0x2
1 − 8x0x1x2 − 3x0x2

2 − 8x3
1 − 4x3

2 ,
G2 = 5x3

0 + 9x0x2
1 − 5x3

1 − 7x2
1 x2 + 6x1x2

2 − x3
2 .

1 3 6 10 11 12 12 ⋯

F = X0(G1 − X1T) + X1(G2 + X0T)
T = λX0X1



Global properties: Regularity and Hilbert Function 

Example                                                                                                              [Bernardi-Oneto-Taufer] 
  

with    

The 0-dimensional scheme evincing this decomposition has Hilbert function  

 
but it is irredundant:  

• If there was, it should correspond to a decomposition  

• We checked computationally that it has to be  

• All such decompositions are evinced by the same 0-dimensional scheme

F = x0G1 + x1G2
G1 = 10x3

0 − 4x2
0 x1 + 4x2

0 x2 − 4x0x2
1 − 8x0x1x2 − 3x0x2

2 − 8x3
1 − 4x3

2 ,
G2 = 5x3

0 + 9x0x2
1 − 5x3

1 − 7x2
1 x2 + 6x1x2

2 − x3
2 .

1 3 6 10 11 12 12 ⋯

F = X0(G1 − X1T) + X1(G2 + X0T)
T = λX0X1



Local properties: Decomposition Loci 

Question 

Given , which linear forms may appear in a minimal decomposition?  

Given , which rank-one tensors may appear in a minimal decomposition?  

TensorGame - a reinforcement learning approach                                                                              [Fawzi et al.] 

• Start with  

• At each step t, the player takes a rank-one tensor  and substitutes 
 

• The game ends when . 

Challenge. Find the optimal way, i.e., conclude in a number of steps equal to 

F ∈ Symdℂn+1

T ∈ ℂn

T0 := T
v1 ⊗ ⋯ ⊗ vd

Tt := Tt−1 − v1 ⊗ ⋯ ⊗ vd

Tt = 0
rk(T)



Local properties: Decomposition Loci 

Question 
Given , which linear forms may appear in a minimal decomposition?  

[Carlini-Catalisano-Oneto] 
The decomposition locus of  is 

 

The forbidden locus of  is the complement of the decomposition locus 

 

note: we always look at them in the concise space 

F ∈ Symdℂn+1

F
:(F) = {[L] ∈ ℙSym1(ℂn+1) : rk(F − λLd) = rk(F) − 1 for some λ}

F
ℱ(F) = ℙ(Sym1(ℂn+1)) ∖ :(F)



Local properties: Decomposition Loci 

Question 
Given , which rank-one tensors may appear in a minimal decomposition?  

[Bernardi-Oneto-Santarsiero] 
The decomposition locus of  is 

 

The forbidden locus of  is the complement of the decomposition locus 

 

note: we always look at them in the concise space 

T ∈ ℂn

T
:(T) = {([v1], …, [vd]) ∈ ℙ(ℂn) : rk(T − λv1 ⊗ ⋯ ⊗ vd) = rk(T) − 1 for some λ}

T
ℱ(T) = ℙ(ℂn) ∖ :(T)



Local properties: Decomposition Loci 

[Carlini-Catalisano-Oneto] 
We compute the decomposition / forbidden loci of homogeneous polynomials 
such as: binary forms, monomials, plane cubics, other families of polynomials 



Local properties: Decomposition Loci 

[Carlini-Catalisano-Oneto] 
We compute the decomposition / forbidden loci of homogeneous polynomials 
such as: binary forms, monomials, plane cubics, other families of polynomials 

[Mourrain-Oneto] 
We perform the TensorGame for homogeneous polynomials of rank at most 5 
In particular, we get a classification of homogeneous polynomials of rank at most 5 
in terms of algebraic properties of apolar ideals  
and we describe how to construct a minimal decomposition



Local properties: Decomposition Loci 

Binary Forms                                                                                                 [Carlini-Catalisano-Oneto] 
. Then,  

 

•  then set of roots of  

•  then set of roots of  

•   and  is odd: then set of roots of  

•   and  is even: then non-empty finite set of points

F ∈ Symdℂ2 Ann(F) = (G1, G2)
 with  deg(G1) ≤ deg(G2) and  deg(G1) + deg(G2) = deg(F) + 2

rk(F) < ⌈(d + 1)/2⌉ :(F) = G1

rk(F) > ⌈(d + 1)/2⌉ ℱ(F) = G1

rk(F) = ⌈(d + 1)/2⌉ d :(F) = G1

rk(F) = ⌈(d + 1)/2⌉ d ℱ(F) =



Local properties: Decomposition Loci 

Binary Forms                                                                                                 [Carlini-Catalisano-Oneto] 
. Then,  

 

•  then set of roots of  

This is the case  is square-free and it is the only generator of its degree

F ∈ Symdℂ2 Ann(F) = (G1, G2)
 with  deg(G1) ≤ deg(G2) and  deg(G1) + deg(G2) = deg(F) + 2

rk(F) < ⌈(d + 1)/2⌉ :(F) = G1

G1



Local properties: Decomposition Loci 

Binary Forms                                                                                                 [Carlini-Catalisano-Oneto] 
. Then,  

 

•  then set of roots of  

In this case,  is not square-free. Let  be any factor of .  
 have no common factors because  is Gorenstein in codimesion 2 

hence, all polynomials of  divisible by  are multiples of  and then not square-free

F ∈ Symdℂ2 Ann(F) = (G1, G2)
 with  deg(G1) ≤ deg(G2) and  deg(G1) + deg(G2) = deg(F) + 2

rk(F) > ⌈(d + 1)/2⌉ ℱ(F) = G1

G1 L G1
G1, G2 Ann(F)

Ann(F) L G1



Local properties: Decomposition Loci 

Monomials                                                                                                 [Carlini-Catalisano-Geramita] 
. Then, . 

 

Idea of proof. Assume  apolar and minimal (i.e., computes the rank) for . 
Consider . Then,  is a non-zero divisor for . 

 

M = xa0
0 ⋯xan

n , a0 ≤ a1 ≤ ⋯ ≤ an Ann(M) = (xa0+1
0 , …, xan+1

n )

rk(M) = 1
a0 + 1

n

∏
i=1

(ai + 1)

Z M
Z′ := Z ∖ (Z ∩ {x0 = 0}) x0 I(Z)

I(Z′ ) + (x0) = I(Z) : (x0) + (x0) ⊂ Ann(M) : (x0) + (x0) = (x0, xa1+1
1 , …, xan+1

n )



Local properties: Decomposition Loci 

Monomials                                                                                                    [Carlini-Catalisano-Oneto] 
. Then, . 

 

Idea of proof. Assume  apolar and minimal (i.e., computes the rank) for . 
Consider . Then,  is a non-zero divisor for . 

 

Then, from basic properties of Hilbert functions of 0-dimensional schemes: 

 

M = xa0
0 ⋯xan

n , a0 ≤ a1 ≤ ⋯ ≤ an Ann(M) = (xa0+1
0 , …, xan+1

n )

rk(M) = 1
a0 + 1

n

∏
i=1

(ai + 1)

Z M
Z′ := Z ∖ (Z ∩ {x0 = 0}) x0 I(Z)

I(Z′ ) + (x0) = I(Z) : (x0) + (x0) ⊂ Ann(M) : (x0) + (x0) = (x0, xa1+1
1 , …, xan+1

n )

#(Z′ ) ≥ dim ℂ[x0, …, xn]/(x0, xa1+1
1 , …, xan+1

n ) = (a1 + 1)⋯(an + 1)

• Given a zero-dimensional scheme ,  
the Hilbert function is strictly increasing until it reaches  

• If  is a non-zero divisor for , i.e., , then 
the first difference of the Hilbert function of  is equal to the Hilbert function of the quotient of  

Z ⊂ ℙn

len(Z)

L Z Z ∩ {L = 0} = ∅
Z I(Z) + (L)

#(Z) =
∞

∑
i=0

ΔhZ(i) = dim ℂ[x0, …, xn]/I(Z) + (L)



Local properties: Decomposition Loci 

Monomials                                                                                                 [Carlini-Catalisano-Geramita] 
. Then, . 

 

Idea of proof. Assume  apolar and minimal (i.e., computes the rank) for . 
Consider . Then,  is a non-zero divisor for . 

 

Then, from basic properties of Hilbert functions of 0-dimensional schemes: 

 

In particular: , namely the hyperplane  is forbidden. 

M = xa0
0 ⋯xan

n , a0 ≤ a1 ≤ ⋯ ≤ an Ann(M) = (xa0+1
0 , …, xan+1

n )

rk(M) = 1
a0 + 1

n

∏
i=1

(ai + 1)

Z M
Z′ := Z ∖ (Z ∩ {x0 = 0}) x0 I(Z)

I(Z′ ) + (x0) = I(Z) : (x0) + (x0) ⊂ Ann(M) : (x0) + (x0) = (x0, xa1+1
1 , …, xan+1

n )

#(Z′ ) ≥ dim ℂ[x0, …, xn]/(x0, xa1+1
1 , …, xan+1

n ) = (a1 + 1)⋯(an + 1)
Z = Z′ {x0 = 0}



Local properties: Decomposition Loci 

Monomials                                                                                                    [Carlini-Catalisano-Oneto] 
. Then, 

 

Idea of proof. Assume  apolar and minimal (i.e., computes the rank) for . 
Consider . Then,  is a non-zero divisor for . 

 

Then, from basic properties of Hilbert functions of 0-dimensional schemes: 

 

In particular: , namely the hyperplane  is forbidden. 

M = xa0
0 ⋯xan

n , a0 = a1 = … = am < am+1 ≤ ⋯ ≤ an

ℱ(M) = {x0⋯xm = 0}

Z M
Z′ := Z ∖ (Z ∩ {x0 = 0}) x0 I(Z)

I(Z′ ) + (x0) = I(Z) : (x0) + (x0) ⊂ Ann(M) : (x0) + (x0) = (x0, xa1+1
1 , …, xan+1

n )

#(Z′ ) ≥ dim ℂ[x0, …, xn]/(x0, xa1+1
1 , …, xan+1

n ) = (a1 + 1)⋯(an + 1)
Z = Z′ {x0 = 0}



Local properties: Decomposition Loci 

[Bernardi-Oneto-Santarsiero] 
We compute the decomposition / forbidden loci of: 
• matrices 
• tangential tensors 
• tensors which are in  by explicit computations from the 26 normal forms    

                                                                                            (finite number of orbits wrt )  
ℂ2 ⊗ ℂ3 ⊗ ℂn

GL × GL × GL



Local properties: Decomposition Loci 

Tangential Tensors                                                                                [Bernardi-Oneto-Santarsiero] 
 

is a tensor lying on the tangent space to the Segre variety at . 

Then, 

 

Note: for the symmetric case, this follows from the previous examples since  

 belongs to the tangent to the Veronese variety at  

and indeed the forbidden locus is given by  

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

Q = [v1 ⊗ ⋯ ⊗ vd]

ℱ(T) = {[Q]}

T = xyd−1 Q = [yd]
{x = 0}



Local properties: Decomposition Loci 

Tangential Tensors                                                                                [Bernardi-Oneto-Santarsiero] 
 

 
Proof.   

Step 1.  

 is still tangential and concise for all , hence it has the same rank.

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

[Q] ∈ ℱ(T) .
T − λQ λ ≠ 0
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Proof.   

Step 2. The result holds for . 

 has rank equal to 4.  
The variety of rank-3 tensors in  is defined by the Cayley hyperdeterminant.

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

d = 3
T

(ℂ2)⊗3
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Proof.   

Step 3. If  with , then . 

Without loss of generalities:  and  

Consider the curve ,    

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

P = p1 ⊗ ⋯ ⊗ pd [pi] ≠ [vi] P ∉ ℱ(T)
vi = (1 : 0) pi = (pi : 1)

f = f1 × ⋯ × fd : ℙ1 → (ℙ1)×d fi : (x : y) ↦ (x + piy : y)
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Proof.   

Step 3. If  with , then . 

Without loss of generalities:  and  

Consider the curve ,    

It is a degree-  Rational Normal Curve passing through  whose tangent line at  contains   

and passing through . We conclude by the previous results on binary forms or monomials.

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

P = p1 ⊗ ⋯ ⊗ pd [pi] ≠ [vi] P ∉ ℱ(T)
vi = (1 : 0) pi = (pi : 1)

f = f1 × ⋯ × fd : ℙ1 → (ℙ1)×d fi : (x : y) ↦ (x + piy : y)

d Q Q T
P
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Proof.   

Step 4. If  with ,  

If  

 

 which satisfies the assumptions of Step 3.

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

P = p1 ⊗ ⋯ ⊗ pd [pi] = [vi] for i = 1,…, m (m < d)
d − m ≥ 3 :

T + λP =
m

∑
i=1

v1 ⊗ ⋯wi⋯ ⊗ vd + (v1 ⊗ ⋯ ⊗ vm) ⊗ T′ 

T′ =
d

∑
i=m+1

vm+1 ⊗ ⋯wi⋯ ⊗ vd + λpm+1 ⊗ ⋯ ⊗ pd
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Proof.   

Step 4. If  with ,  

If  

 

  which satisfies the assumptions of Step 2.

T = v1 ⊗ v2 ⊗ ⋯ ⊗ wd + … + v1 ⊗ w2 ⊗ ⋯ ⊗ vd + w1 ⊗ v2 ⊗ ⋯ ⊗ vd

ℱ(T) = {[Q]}

P = p1 ⊗ ⋯ ⊗ pd [pi] = [vi] for i = 1,…, m (m < d)
d − m < 3 :

T + λP =
d−3

∑
i=1

v1 ⊗ ⋯wi⋯ ⊗ vd + (v1 ⊗ ⋯ ⊗ vd−3) ⊗ T′ 

T′ =
d

∑
i=d−2

vd−2 ⊗ ⋯wi⋯ ⊗ vd + λpd−2 ⊗ pd−1 ⊗ pd



Thank you for the attention 

Merci Bernard 
et bon anniversaire!


