

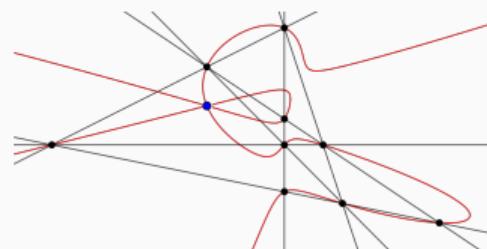
A new question on planar polynomial interpolation and line arrangements

Alessandro Oneto (*Universitat Politècnica de Catalunya, Barcelona, Spain*)

(joint work with M. Di Marca⁽¹⁾ and G. Malara⁽²⁾)

@ Seminario di Algebra Commutativa e Geometria Algebrica, U. di Genova (Italy)

21 February 2018



(1) DIMA - Università degli Studi di Genova, Italy (2) Pedagogical University of Cracow, Poland
A. Oneto - Planar polynomial interpolation and line arrangements

Introduction

Polynomial interpolation: simple points

Polynomial Interpolation Problem

Given a set of points $\mathbb{X} = \{P_1, \dots, P_d\}$ in complex projective plane \mathbb{P}^2 ,
how many curves of degree j pass through \mathbb{X} ?

*e.g., through 2 distinct points there is a unique line
through 5 general points there is a unique conic*

Polynomial interpolation: simple points

Let $S = \mathbb{C}[x_0, x_1, x_2] = \bigoplus_{j \geq 0} S_j$, standard graded polynomial ring.

$S_j := \mathbb{C}$ -vector space of homogeneous polynomials of degree j

Hilbert function

Let $I = \bigoplus_{j \geq 0} I_j$ be a homogeneous ideal. The **Hilbert function** of S/I in degree j is

$$\text{HF}_{S/I}(j) := \dim_{\mathbb{C}} S_j/I_j = \dim_{\mathbb{C}} S_j - \dim_{\mathbb{C}} I_j.$$

Let $\mathbb{X} = \{P_1, \dots, P_d\} \subset \mathbb{P}^2$, then $I(\mathbb{X}) = \wp_1 \cap \dots \cap \wp_d = \bigoplus_{j \geq 0} I(\mathbb{X})_j \subset S$.

$$P = (p_0 : p_1 : p_2) \iff \wp = (p_1 x_0 - p_0 x_1, p_2 x_0 - p_0 x_2)$$

The **Hilbert function** of \mathbb{X} is the Hilbert function of $S/I(\mathbb{X})$.

Polynomial interpolation: simple points

Polynomial Interpolation Problem

Given a set of points $\mathbb{X} = \{P_1, \dots, P_d\}$ in complex projective plane \mathbb{P}^2 ,
what is the Hilbert function of \mathbb{X} in degree j ?

Obviously, the answer depends on the position of the points.

[Geramita-Orecchia, 1981] If the points are in **general position**,

$$\text{HF}_{\mathbb{X}}(j) = \min \left\{ \binom{j+2}{2}, d \right\}.$$

Proof. If $\{m_1, \dots, m_{\binom{j+2}{2}}\}$ is the standard monomial basis for S_j , then $\text{HF}_{\mathbb{X}}(j) = \text{rk } (m_a(P_b))_{a,b}$.

Polynomial interpolation: fat points

Fat points

A **fat point** of **multiplicity** m and **support** at P is the 0-dim scheme given by \wp^m . We denote it by mP .

A **scheme of fat points** is a union of fat points, i.e., $\mathbb{X} = m_1P_1 + \dots + m_dP_d$ defined by $I(\mathbb{X}) = \wp_1^{m_1} \cap \dots \cap \wp_d^{m_d}$.

Remark. $f \in \wp^m$ if and only if $D(f)|_P = 0$, for any $D \in \mathbb{C}[\partial_0, \partial_1, \partial_2]_{\leq m-1}$.

Polynomial interpolation: fat points

Polynomial Interpolation Problem

Let $\mathbb{X} = m_1 P_1 + \dots + m_d P_d$ be a scheme of fat points in \mathbb{P}^2 ,
what is the Hilbert function of \mathbb{X} in degree j ?

this is equivalent to asking

Polynomial interpolation: fat points

Polynomial Interpolation Problem

Let $\mathbb{X} = m_1 P_1 + \dots + m_d P_d$ be a scheme of fat points in \mathbb{P}^2 ,
what is the Hilbert function of \mathbb{X} in degree j ?

this is equivalent to asking

Given a set of points $\{P_1, \dots, P_d\}$ and positive integers m_1, \dots, m_d ,
how many curves of degree j are singular at P_i of order m_i , for $i = 1, \dots, d$?

Polynomial interpolation: fat points

Remark. $f \in \wp^m$ if and only if $D(f)|_P = 0$, for any $D \in \mathbb{C}[\partial_0, \partial_1, \partial_2]_{\leq m-1}$.

Therefore, a fat point of multiplicity m in \mathbb{P}^2 imposes $\binom{m+1}{2}$ linear equations.

If we assume $\mathbb{X} = m_1 P_1 + \dots + m_d P_d$ to have general support, then,

the **expected Hilbert function** of \mathbb{X} in degree j is

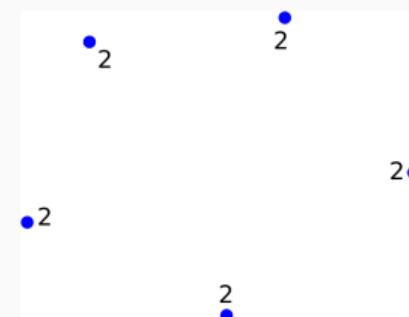
$$\text{exp.HF}_{\mathbb{X}}(j) = \min \left\{ \binom{j+2}{2}, \sum_{i=1}^d \binom{m_i+1}{n} \right\}.$$

Polynomial interpolation: fat points

Example 1. Let $\mathbb{X} = 2P_1 + \dots + 2P_5 \subset \mathbb{P}^2$, with general support.

We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 5 \cdot 3 = 0.$$



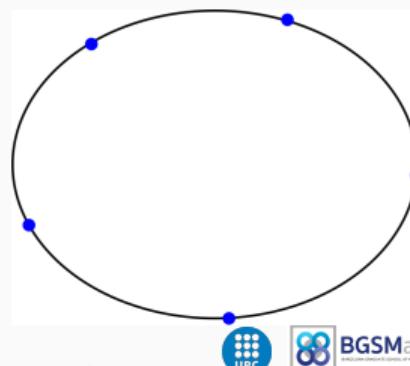
Polynomial interpolation: fat points

Example 1. Let $\mathbb{X} = 2P_1 + \dots + 2P_5 \subset \mathbb{P}^2$, with general support.

We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 5 \cdot 3 = 0.$$

There is a unique conic C passing through the points.



Polynomial interpolation: fat points

Example 1. Let $\mathbb{X} = 2P_1 + \dots + 2P_5 \subset \mathbb{P}^2$, with general support.

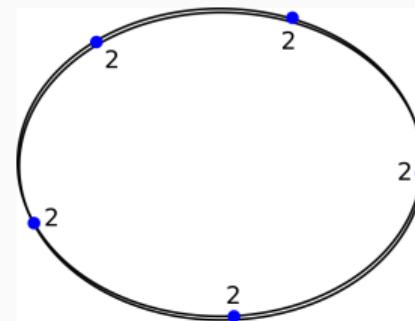
We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 5 \cdot 3 = 0.$$

There is a unique conic C passing through the points.

Hence, $2C \in I(\mathbb{X})_4$. By Bézout's Theorem,

$$\dim I(\mathbb{X})_4 = 1 > 0 = \text{exp. dim } I(\mathbb{X})_4.$$

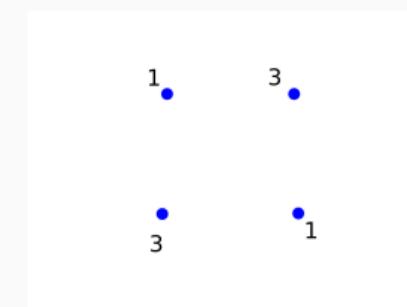


Polynomial interpolation: fat points

Example 2. Let $\mathbb{X} = 3P_1 + 3P_2 + P_3 + P_4 \subset \mathbb{P}^2$, with general support.

We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 2 \cdot 6 - 2 = 1.$$



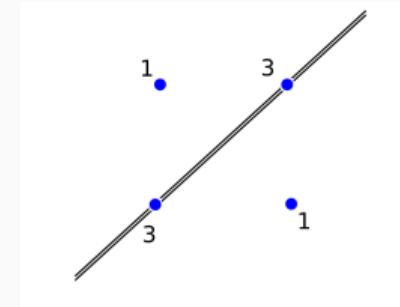
Polynomial interpolation: fat points

Example 2. Let $\mathbb{X} = 3P_1 + 3P_2 + P_3 + P_4 \subset \mathbb{P}^2$, with general support.

We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 2 \cdot 6 - 2 = 1.$$

The line $L = \overline{P_1 P_2}$ is a fixed component.



Polynomial interpolation: fat points

Example 2. Let $\mathbb{X} = 3P_1 + 3P_2 + P_3 + P_4 \subset \mathbb{P}^2$, with general support.

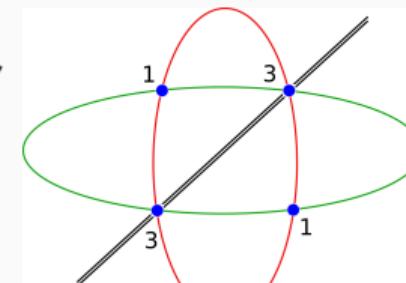
We expect to have no quartics through \mathbb{X} .

$$\text{exp. dim } I(\mathbb{X})_4 = \binom{4+2}{2} - 2 \cdot 6 - 2 = 1.$$

The line $L = \overline{P_1 P_2}$ is a fixed component.

If $\langle \text{C}_1, \text{C}_2 \rangle = I(P_1 + P_2 + P_3 + P_4)$, then $C_1 L^2, C_2 L^2 \in I(\mathbb{X})_4$, and

$$\dim I(\mathbb{X})_4 = 2 > 1 = \text{exp. dim } I(\mathbb{X})_4.$$



SHGH Conjecture

BENIAMINO SECRE

ALCUNE QUESTIONI SU INSIEMI FINITI DI PUNTI IN GEOMETRIA ALGEBRICA

È con viva commozione che mi accingo a parlare nella mia città natia, in questa gloriosa Università che mi accolse sedicenne e dove trascorsi il periodo più formativo e determinante dei miei studi. Sono lieto di rivedere qui presenti, e vegeti quasi che da allora non fossero trascorsi ben otto lustri, i miei professori di quegli anni BOCCIO e TOGLIATTI, ed il professore TERRACINI del quale fui poi per qualche tempo assistente.

Il mio pensiero si volge con gratitudine ad essi ed agli altri miei Maestri: CORRADO SECRE con cui mi addottorai, SOMIGLIANA del quale pure fui assistente, ed inoltre PEANO e FANO, tutti purtroppo scomparsi, ma la cui voce ed i cui insegnamenti ancora mi riecheggiano nel cuore.

— 72 —

Osserviamo anzitutto che, essendo $\delta \geq -1$, risulta sempre $\sigma > 0$ quando si supponga $d < -1$. Altri esempi di sistemi lineari Σ sovrabbondanti, aventi cioè appunto $\sigma > 0$, vengono offerti da

$$\{10 | 4^2, 5^3\}$$

e da

$$\{n | k_1, k_2\} \quad \text{con } k_1, k_2 \leq n, k_1 + k_2 \geq n+2,$$

per i quali rispettivamente si ha $d = 0$, $\sigma = 2$ e

$$\sigma = (k_1 + k_2 - n)(k_1 + k_2 - n - 1)/2;$$

e va rilevato al riguardo come ciascuno di questi sistemi risulti dotato di componente fissa multipla (rispettivamente: la conica per i cinque punti base contata 4 volte e la retta per i due punti base contata $k_1 + k_2 - n$ volte). Questi ed altri esempi consimili portano a fare ritenere probabile che

Affinchè un sistema lineare completo Σ di curve piane, dotato di un numero finito di punti base assegnati in posizione generica ed avente dimensione virtuale $d \geq -1$, sia sovrabbondante (e quindi effettivo, cioè di dimensione $\delta \geq 0$) è necessario (ma, come risulta da esempi, non sufficiente) ch'esso possegga qualche componente fissa multipla.

SHGH Conjecture

B. Segre 1961

Alcune questioni su insiemi finiti di punti in geometria algebrica (page 72)

"(...) in order that a complete linear system Σ of plane curves, passing through multiple base points in general position with virtual dimension $d \geq -1$ is superabundant (and then effective, i.e., of dimension $\delta \geq 0$), it is necessary (but, from examples, not sufficient) that it has some multiple fixed component."

SHGH Conjecture

A degree d curve C is *negative* for $P_1, \dots, P_d \in \mathbb{P}^2$ if $(\text{mult}_{P_1}(C))^2 + \dots + (\text{mult}_{P_d}(C))^2 > d^2$.

[SHGH Conjecture - B. Segre, '61; Harbourne '85; Gimigliano '87; Hirschowitz '89]

If with general support and $f = f_1^{b_1} \cdots f_t^{b_t}$ is the greatest common divisor of $I(\mathbb{X})_j$. Let \mathcal{N} be the set of negative curves for P_1, \dots, P_d . Then,

$$\text{HF}_{\mathbb{X}}(j) = \min \left\{ \binom{j+2}{2}, \sum_{i=1}^s \binom{m_i+1}{2} - \sum_{i : f_i \in \mathcal{N}} \binom{b_i}{2} \right\}.$$

[Castelnuovo, 1891] $d \leq 9$; [Alexander-Hirschowitz, 1995] $m = 2$ (for any \mathbb{P}^n);

[Yang, 2007] $m_i \leq 7$; [Ciliberto-Miranda, 1998] $m_i = m \leq 12$; ...and some other special cases

A new planar interpolation problem

A new planar interpolation problem

Problem. [Cook II - Harbourne - Migliore - Nagel, '16]

Let $Z = P_1 + \dots + P_d \subset \mathbb{P}^n$ be a set of reduced points (non necessary with general support) and consider the linear system $\mathcal{L}_j(Z)$ of curves of degree j passing through Z .

Let \mathbb{X} be a scheme of fat points with general support,

how many conditions does \mathbb{X} impose on $\mathcal{L}_j(Z)$?

$Z = \emptyset$ is the situation of SHGH Conjecture.

A new planar interpolation problem

Problem. [Cook II - Harbourne - Migliore - Nagel, '16]

Let $Z = P_1 + \dots + P_d \subset \mathbb{P}^n$ be a set of reduced points (non necessary with general support) and consider the linear system $\mathcal{L}_j(Z)$ of curves of degree j passing through Z .

Let \mathbb{X} be a scheme of fat points with general support,

how many conditions does \mathbb{X} impose on $\mathcal{L}_j(Z)$?

$Z = \emptyset$ is the situation of SHGH Conjecture.

We focus on $\mathbb{X} = mQ$, with a Q general point

Unexpected curves

Definition. [Cook II - Harbourne - Migliore - Nagel, '16]

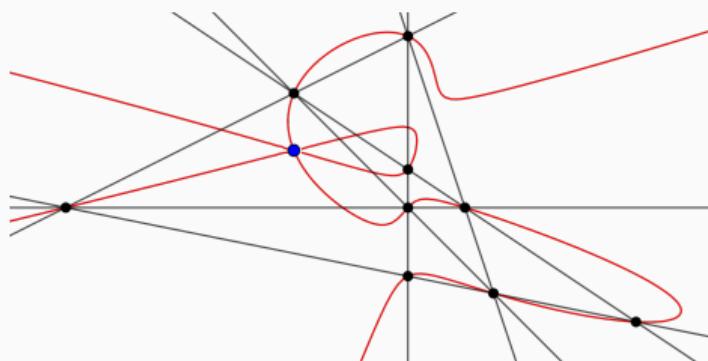
Let $Z = P_1 + \dots + P_d \subset \mathbb{P}^n$ be a set of reduced points (non necessary with general support). We say that Z admits an **unexpected curve** of degree $j+1$ if, for general point $Q \in \mathbb{P}^2$

$$\dim_{\mathbb{C}} I(Z + jQ)_{j+1} > \max \left\{ 0, \dim_{\mathbb{C}} I(Z)_{j+1} - \binom{j+1}{2} \right\}$$

Unexpected curves

Questions.

1. Classify the pairs (Z, j) for which Z admits an unexpected curve of degree $j + 1$.



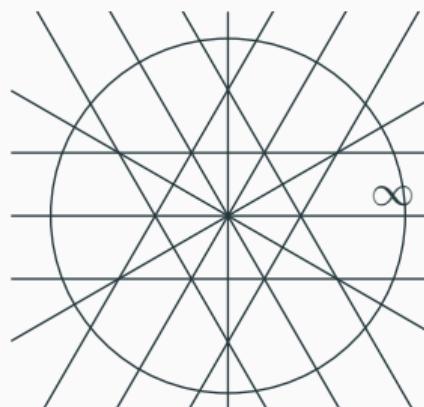
[Cook II - Harbourne - Migliore - Nagel]
Example of 9 points with an unexpected cubic.

[Farnik - Galuppi - Sodomaco - Trok]
Up to isomorphism, this is the only possible example of 9 points with an unexpected cubic.

Unexpected curves

Questions.

2. Provide more examples.



A. Oneto - Planar polynomial interpolation and line arrangements

[Di Marca - Malara - Oneto]
Series of examples coming from
special line arrangements in \mathbb{P}^2 .

Line arrangements

Line arrangements

A **line arrangement** is a collection of lines

$$\mathcal{A} = \{\ell_1, \dots, \ell_r\}$$

A **singular point** in a line arrangement is a point where at least two lines meet

$$\text{Sing}(\mathcal{A}) = \bigcup_{a \neq b} L_a \cap L_b$$

The **multiplicity** of a singular point is the number of lines of \mathcal{A} meeting at the point

$$m(P) = \#\{L \in \mathcal{A} \mid P \in L\}$$

Dual line arrangement

Given a point $P = (p_0 : p_1 : p_2) \in \mathbb{P}^2$, we define the **dual line**

$$L_P = \{p_0x_0 + p_1x_1 + p_2x_2 = 0\}.$$

Given a set of points $Z = \{P_1, \dots, P_d\}$, we define a **dual line arrangement**

$$\mathcal{A}_Z = \{L_{P_1}, \dots, L_{P_d}\}.$$

Splitting type

[Cook II - Harbourne - Migliore - Nagel]

Let $\mathcal{A} = \{L_1, \dots, L_d\}$ be a line arrangement. Let $f_{\mathcal{A}} = \ell_1 \cdots \ell_d$, where $L_i = \{\ell_i = 0\} \subset \mathbb{P}^2$.

Then we consider the **derivation bundle** $\mathcal{D}_{\mathcal{A}}$ defined as the kernel

$$0 \longrightarrow \mathcal{D}_{\mathcal{A}} \longrightarrow \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \xrightarrow{\nabla_{\mathcal{A}}} \mathcal{O}_{\mathbb{P}^2}(d-1),$$

where $\nabla_{\mathcal{A}} = [\partial_0 f, \partial_1 f, \partial_2 f]$.

- $\mathcal{D}_{\mathcal{A}}$ is isomorphic to (a twist of) the *syzygy bundle* of the Jacobian ideal $J_{\mathcal{A}} = (\partial_0 f, \partial_1 f, \partial_2 f) \subset \mathbb{C}[x_0, x_1, x_2]$;
- $\mathcal{D}_{\mathcal{A}}$ is a locally free sheaf of rank 2.

Splitting type

Definition. If $\mathcal{D}_{\mathcal{A}}$ is free, i.e., $\mathcal{D}_{\mathcal{A}} = \mathcal{O}_{\mathbb{P}^2}(-a) \oplus \mathcal{O}_{\mathbb{P}^2}(-b)$, we say that

\mathcal{A} is **free** with **splitting type** (a, b) .

Remark 1. In this case, the minimal free resolution of the Jacobian ideal is

$$0 \longrightarrow S(-(d-1) - a) \oplus S(-(d-1) - b) \longrightarrow S(-(d-1))^{\oplus 3} \longrightarrow S \longrightarrow S/\mathcal{J}_{\mathcal{A}} \longrightarrow 0.$$

Remark 2. If it is not free, we have $\mathcal{D}_{\mathcal{A}}|_L = \mathcal{O}_{\mathbb{P}^1}(-a) \oplus \mathcal{O}_{\mathbb{P}^1}(-b)$, on any line L . This is the *splitting type of \mathcal{A} on L* and it is constant on an open set of the dual projective plane.

In this situation, we define the *splitting type of \mathcal{A}* as the splitting type on the general line.

We always have $a + b = d - 1$

Splitting type vs Unexpected curves

Theorem. [Cook II - Harbourne - Migliore - Nagel]

Let $Z \subset \mathbb{P}^2$ be a set of reduced points and let (a, b) be the splitting type of the dual line arrangement \mathcal{A}_Z , with $a \leq b$.

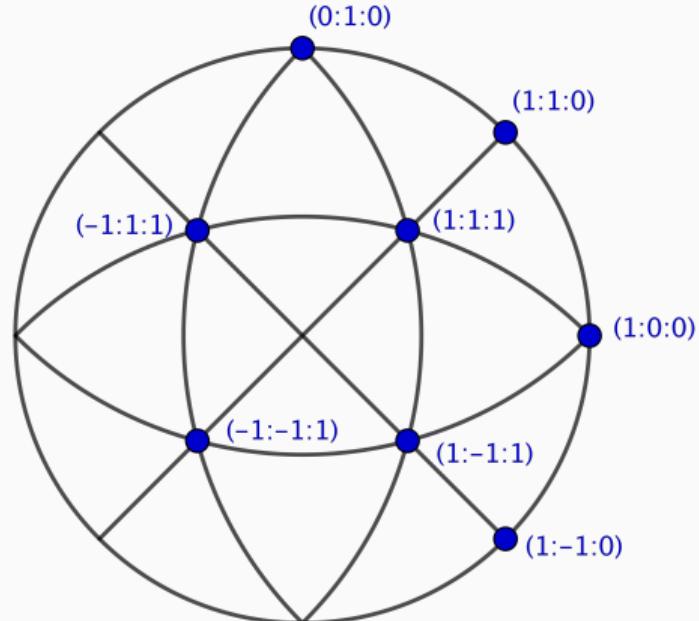
Then, Z admits unexpected curves if and only if

1. $|Z| \geq 2a + 2$;
2. Z does not contain $2a + 2$ collinear points.

In this case, Z admits unexpected curves of degree $j + 1$ if and only if

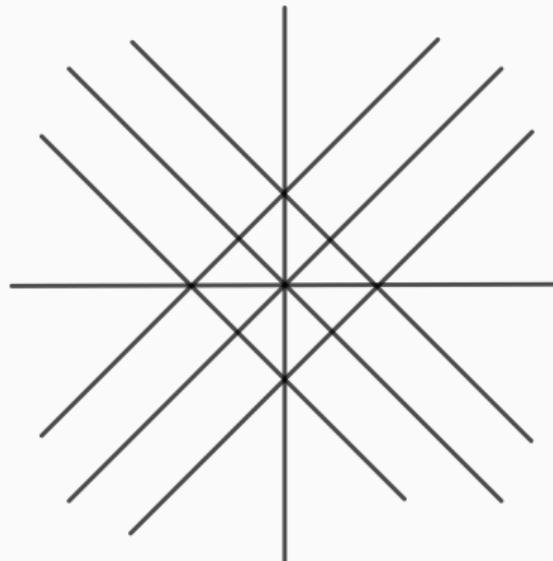
$$a \leq j \leq b - 2.$$

Example [Cook II - Harbourne - Migliore - Nagel]



$$Z = \{(1 : 0 : 0), (0 : 1 : 0), (1 : -1 : 0), (-1 : 1 : 1), (1 : -1 : 1), (1 : 1 : 0), (-1 : -1 : 1), (1 : 1 : 1)\}.$$

Example [Cook II - Harbourne - Migliore - Nagel]



$$\begin{aligned} f_{\mathcal{A}} = & (x)(y) \cdot \\ & \cdot (x - y)(x - y - z)(x - y + z) \cdot \\ & \cdot (x + y)(x + y - z)(x + y + z) \end{aligned}$$

Example [Cook II - Harbourne - Migliore - Nagel]

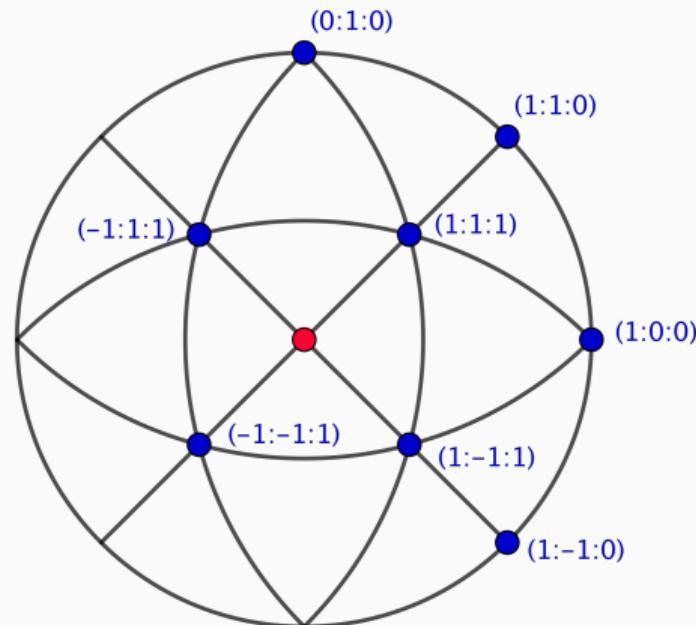
$$f_{\mathcal{A}} = (x)(y)(x-y)(x-y-z)(x-y+z)(x+y)(x+y-z)(x+y+z), \quad \deg(f_{\mathcal{A}}) = \#(\mathcal{A}) = 8$$

$$0 \longrightarrow \begin{matrix} S(-7 - 3) \\ \oplus \\ S(-7 - 4) \end{matrix} \longrightarrow S(-7)^3 \longrightarrow S \longrightarrow S/J_{\mathcal{A}} \longrightarrow 0$$

The splitting type of \mathcal{A} is $(3, 4)$ \implies there are no unexpected curves!

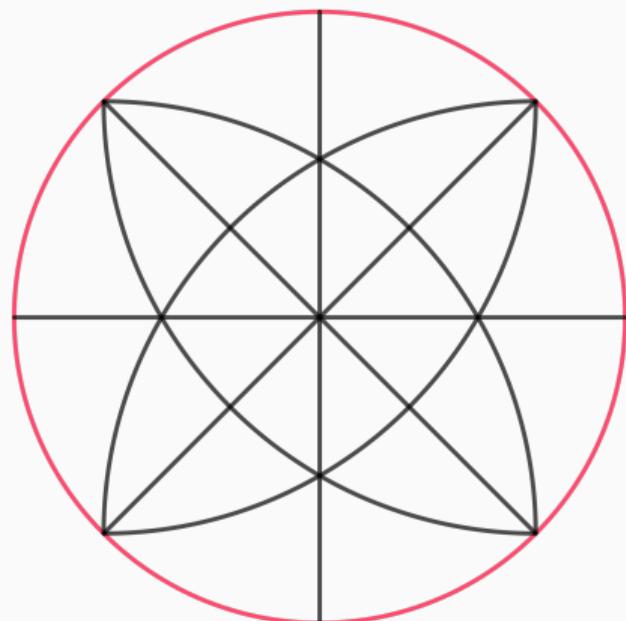
Example [Cook II - Harbourne - Migliore - Nagel]

We add the point $(0 : 0 : 1)$



$$Z = \{(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : -1 : 0), (-1 : 1 : 1), (1 : -1 : 1), (1 : 1 : 0), (-1 : -1 : 1), (1 : 1 : 1)\}.$$

Example [Cook II - Harbourne - Migliore - Nagel]



A. Oneto - Planar polynomial interpolation and line arrangements

We add the line at infinity $z = 0$

$$f_{\mathcal{A}} = (x)(y)(z) \cdot \\ \cdot (x - y)(x - y - z)(x - y + z) \cdot \\ \cdot (x + y)(x + y - z)(x + y + z)$$

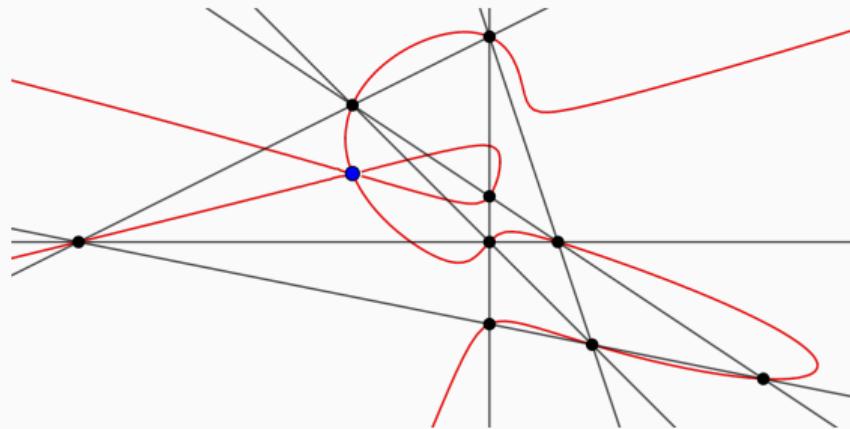
Example [Cook II - Harbourne - Migliore - Nagel]

$$f_{\mathcal{A}} = (x)(y)(z)(x-y)(x-y-z)(x-y+z)(x+y)(x+y-z)(x+y+z), \quad \deg(f_{\mathcal{A}}) = \#(\mathcal{A}) = 9$$

$$0 \longrightarrow \begin{matrix} S(-8 - 3) \\ \oplus \\ S(-8 - 5) \end{matrix} \longrightarrow S(-8)^3 \longrightarrow S \longrightarrow S/J_{\mathcal{A}} \longrightarrow 0$$

The splitting type of \mathcal{A} is $(3, 5)$

Example [Cook II - Harbourne - Migliore - Nagel]



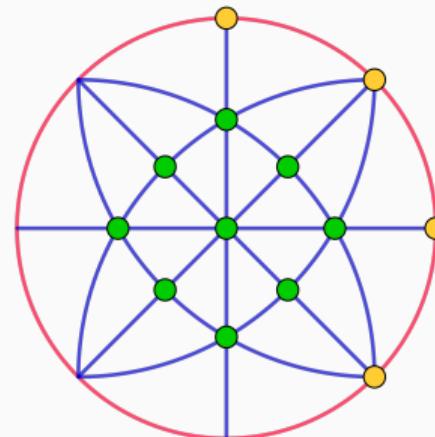
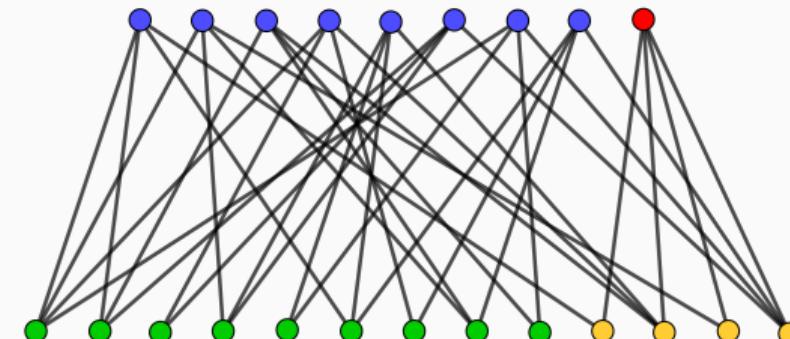
The splitting type of \mathcal{A} is $(3, 5)$ \implies there is an unexpected quartic!

Motivations and Connections

Terao's Conjecture on freeness of line arrangements

Terao's Conjecture.

The freeness of a line arrangement depends only on its incidence lattice.



Terao's Conjecture on freeness of line arrangements

Proposition. [Cook II - Harbourne - Migliore - Nagel]

Let \mathcal{A} and \mathcal{A}' be two line arrangements with the same incidence lattice. Assume \mathcal{A} is free with splitting type (a, b) . Then one has:

1. \mathcal{A}' is free if and only if \mathcal{A} has the same splitting type as \mathcal{A}' ;
2. If \mathcal{A}' is not free, then its splitting type is $(a - s, b + s)$, for some positive integer s .

Corollary. [Cook II - Harbourne - Migliore - Nagel]

If the splitting type of a line arrangement is a combinatorial property, then Terao's conjecture is true.

Strong Lefschetz Property of Artinian algebras

Definition. An Artinian algebra $A = S/I$ satisfies the **Strong Lefschetz Property** (SLP) at **range** k and in **degree** d if, for a general linear form ℓ , the homomorphism $\times \ell^k : A_d \longrightarrow A_{d+k}$ has maximal rank, i.e., it is either surjective or injective.

Theorem. [Cook II - Harbourne - Migliore - Nagel] Let \mathcal{A} be a line arrangement defined by $f = \ell_1 \cdots \ell_d$ and let Z be the dual configuration of points.

Then, the following are equivalent:

1. Z admits an unexpected curve of degree $j + 1$
2. $S/(\ell_1^{j+1}, \dots, \ell_d^{j+1})$ fails SLP in range 2 and degree $j - 1$.

Key fact. [Emsalem - Iarrobino '95; Geramita '96] For any $[\ell_i] \in \mathbb{P}(S_1)$, denote $\wp_i = I([\ell_i])$.

$$\dim_{\mathbb{C}} [S/(\ell_1^{j+1}, \dots, \ell_d^{j+1}, \ell_{d+1}^2)]_{j+1} = \dim_{\mathbb{C}} [\wp_1 \cap \dots \cap \wp_d \cap \wp_{d+1}^j]_{j+1}$$

New examples

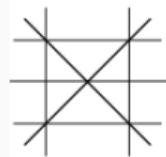
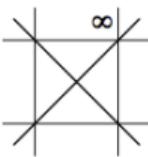
Simplicial line arrangements

Grünbaum, B. A catalogue of simplicial arrangements in the real projective plane,
Ars Mathematica Contemporanea 2 : 1–25, 2009.

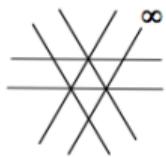
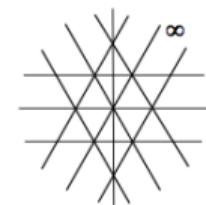
Ars Math. Contemp. 2 (2009) 1–25

B. Grünbaum: *A catalogue of simplicial arrangements in the real projective plane*

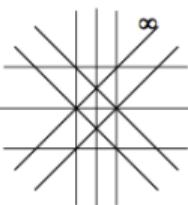
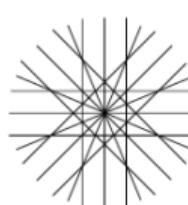
Ars Math. Contemp. 2 (2009) 1–25



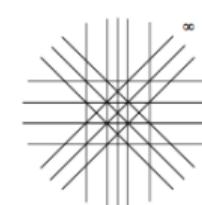
$\mathcal{A}(7,1)$



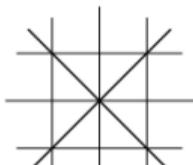
$\mathcal{A}(11,1)$



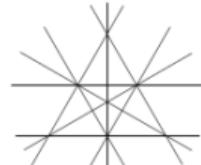
$\mathcal{A}(16,1)$



$\mathcal{A}(16,2)$

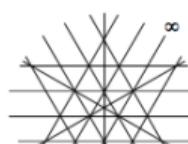


$\mathcal{A}(8,1)$



$\mathcal{A}(9,1)$

$\mathcal{A}(12,1)$



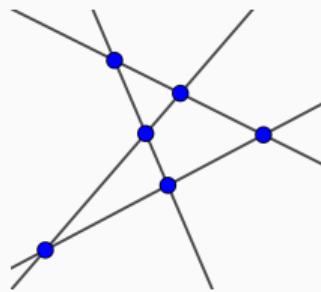
$\mathcal{A}(16,3)$

$\mathcal{A}(16,4)$

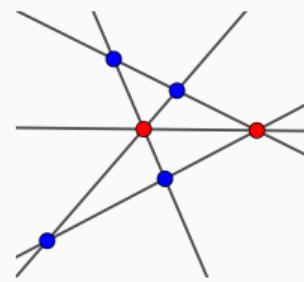
Supersolvable line arrangements

Definition.

A line arrangement is called **supersolvable** if there exists a **modular point**, i.e., $\exists P \in \text{Sing}(\mathcal{A})$ such that $\forall Q \in \text{Sing}(\mathcal{A}), \overline{PQ} \in \mathcal{A}$.



non-example



example

We call **multiplicity** of the arrangement $m = m(\mathcal{A}) = \max\{m(P) : P \in \text{Sing}(\mathcal{A})\}$.

Supersolvable line arrangements

Lemma. Let \mathcal{A} be a supersolvable line arrangement with $d = \#(\mathcal{A})$ and multiplicity m . Then, the splitting type of \mathcal{A} is $(m - 1, d - m)$.

Sketch of proof.

1. If $d - m = 0$, i.e., \mathcal{A} is a “star”, then prove it by induction on m .
2. If $d \geq m$, then prove it by induction on $d - m$.

In both steps, we use the following lemma.

Lemma. [Orlik-Terao] Let \mathcal{A} be a line arrangement and $L \in \mathcal{A}$. Let $\mathcal{A}' = \mathcal{A} \setminus \{L\}$. If:

i) \mathcal{A}' is free and has splitting type (a, b) ; ii) $\#(\text{Sing}(\mathcal{A}) \cap L) = b + 1$ (or $a + 1$, respectively);

then, \mathcal{A} is free with splitting type $(a + 1, b)$ (or $(a, b + 1)$, respectively).

Supersolvable line arrangements

Theorem. [Di Marca - Malara - O.]

Let \mathcal{A} be a supersolvable line arrangement with $d = \#(\mathcal{A})$ and multiplicity m . Let Z be the dual configuration of points. Then,

Z admits unexpected curves if and only if $d > 2m$.

In this case, Z admits unexpected curves of degree $j + 1$ if and only if

$$m - 1 \leq j \leq d - m - 2.$$

Supersolvable line arrangements

Proof.

By Lemma, the splitting type of \mathcal{A} is $(m - 1, d - m)$.

Recall characterization by **[Cook II - Harbourne - Migliore - Nagel]**:

- i. $2a + 2 < \#(\mathcal{A})$
- ii. there are no $a + 1$ collinear points, i.e., $m(P) < a + 1$, $\forall P \in \text{Sing}(\mathcal{A})$

Now:

1. if $m - 1 \leq d - m$, then

- i. $2(m - 1) + 2 < d \Leftrightarrow 2m < d$;
- ii. $\forall P \in \text{Sing}(\mathcal{A})$. $m(P) \leq (m - 1) + 1 = m$ ✓

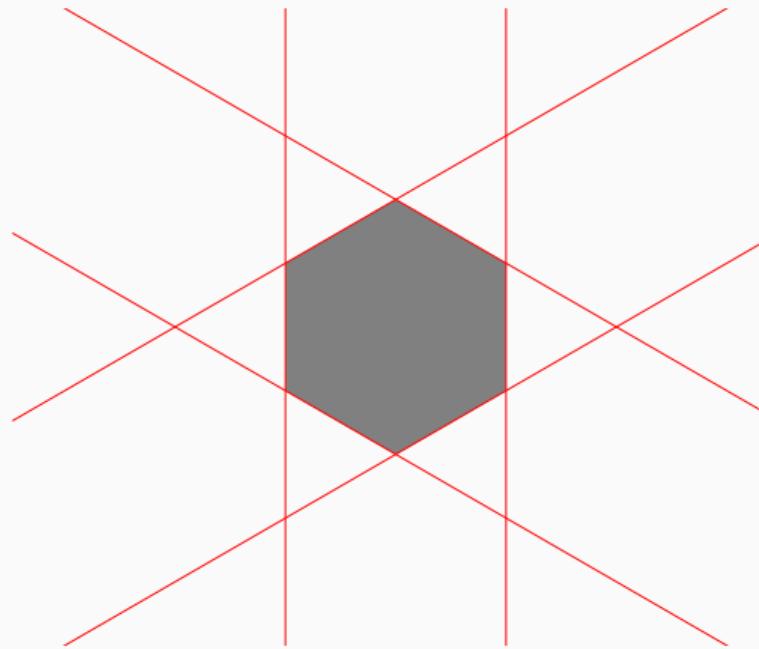
2. if $m - 1 \geq d - m$, then

- i. $2(d - m) + 2 < d \Leftrightarrow d < 2m - 2$;

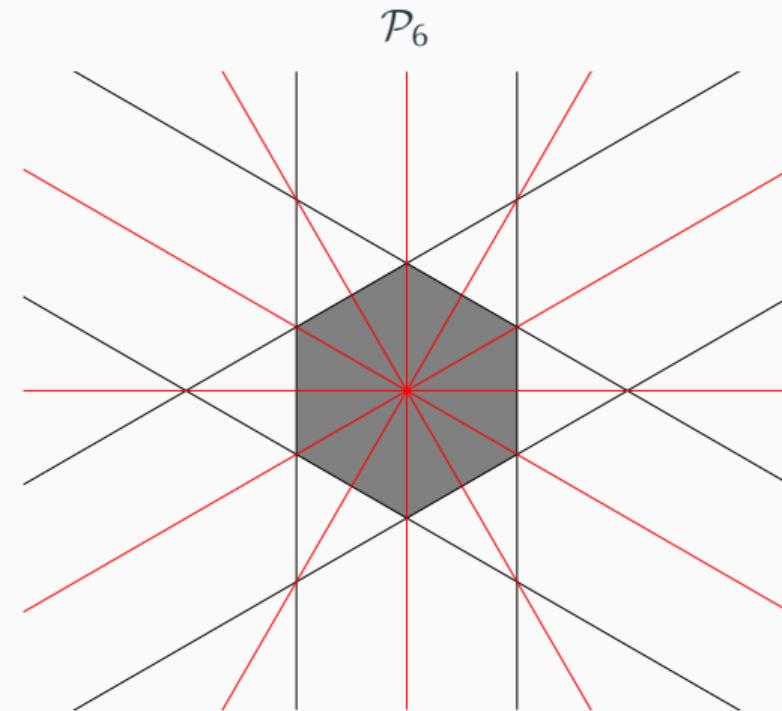
- ii. $\forall P \in \text{Sing}(\mathcal{A})$. $m(P) \leq (d - m) + 1 = m \Rightarrow m \leq d - m + 1 \Rightarrow d \geq 2m - 1$ → ←

Polygonal arrangements

Hexagonal arrangement

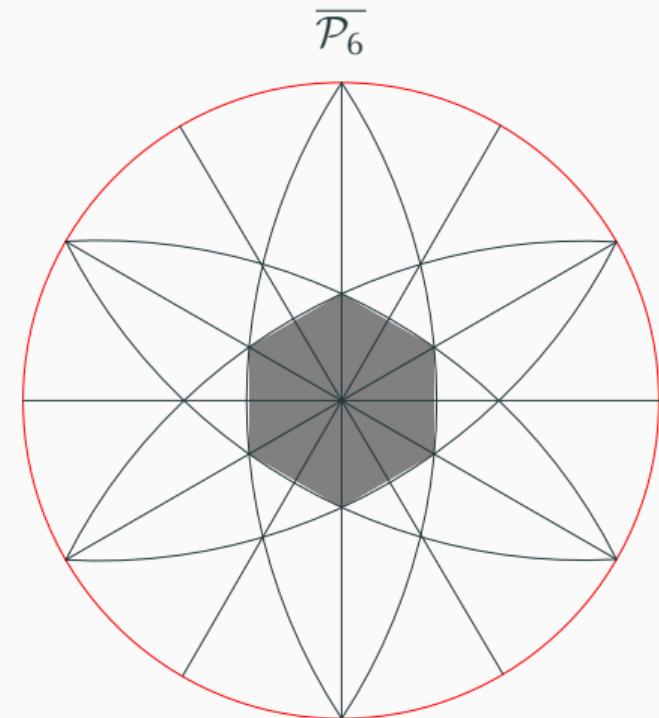


Polygonal arrangements



A. Oneto - Planar polynomial interpolation and line arrangements

Polygonal arrangements



A. Oneto - Planar polynomial interpolation and line arrangements

Polygonal arrangements

Theorem. [Di Marca - Malara - O.]

Let N be a positive integer.

1. The configuration f points dual to \mathcal{P}_N admits no unexpected curves.
2. If N is even, then the configuration of points dual to $\overline{\mathcal{P}_N}$ admits an unexpected curve of degree N .

Proof.

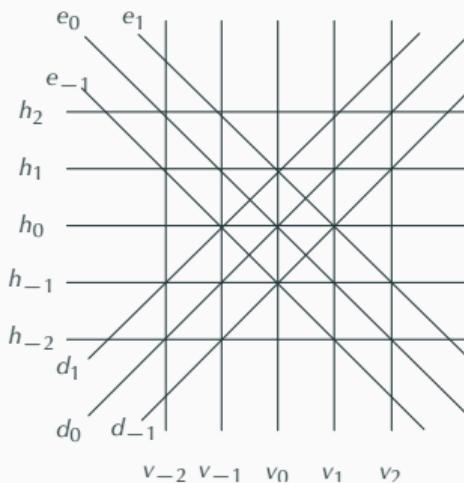
In both cases, $m(\mathcal{P}_N) = m(\overline{\mathcal{P}_N}) = N$.

1. $|\mathcal{P}_N| = 2N$, hence, the splitting type is $(N - 1, N)$;
2. $|\overline{\mathcal{P}_N}| = 2N + 1$, hence, the splitting type is $(N - 1, N + 1)$.

Tic-tac-toe arrangements

A **tic-tac-toe arrangement of type (k, j)** , denoted \mathcal{T}_k^j , is the arrangement defined by:

1. $v_i, i = -k, \dots, k$: vertical lines $x = iz$;
2. $h_i, i = -k, \dots, k$: horizontal lines $y = iz$;
3. $d_i, i = -j, \dots, j$: the diagonals $x - y + iz = 0$;
4. $e_i, i = -j, \dots, j$:
the anti-diagonals $x + y + iz = 0$.



The tic-tac-toe arrangement of type $(2, 1)$.

Tic-tac-toe arrangements

Theorem. [Di Marca - Malara - O.]

The complete tic-tac-toe arrangement $\bar{\mathcal{T}}_k^j$ has an unexpected curve of degree $2(k + j + 1)$.

Proof.

The splitting type is $(2k + 2j + 1, 2k + 2j + 3)$.

...more examples in the (coming soon) paper!

Tic-tac-toe arrangements

Theorem. [Di Marca - Malara - O.]

The complete tic-tac-toe arrangement $\bar{\mathcal{T}}_k^j$ has an unexpected curve of degree $2(k + j + 1)$.

Proof.

The splitting type is $(2k + 2j + 1, 2k + 2j + 3)$.

...more examples in the (coming soon) paper!

Grazie per l'attenzione!

BIBLIOGRAPHY

- M. Di Marca, G. Malara, A. Oneto.

Unexpected curves arising from special line arrangements.

- D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. **Line arrangements and configurations of points with an unusual geometric property.** *Preprint*, arXiv:1602.02300.
- B. Grünbaum. **A catalogue of simplicial arrangements in the real projective plane.** *Ars Mathematica Contemporanea* 2 : 1–25 (2009).
- P. Orlik, and H. Terao. **Arrangement of hyperplanes.** *Grundlehren der Mathematischen Wissenschaften* 300, Springer-Verlag, Berlin, (1992).