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Polynomial interpolation: simple points

Polynomial Interpolation Problem

Given a set of points X = {P1, . . . , Pd} in complex projective plane P2,
how many curves of degree j pass through X?

e.g., through 2 distinct points there is a unique line

through 5 general points there is a unique conic
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Polynomial interpolation: simple points

Let S = C[x0, x1, x2] =
⊕

j≥0 Sj, standard graded polynomial ring.

Sj := C-vector space of homogeneous polynomials of degree j

Hilbert function

Let I =
⊕

j≥0 Ij be a homogeneous ideal. The Hilbert function of S/I in degree j is

HFS/I(j) := dimC Sj/Ij = dimC Sj − dimC Ij.

Let X = {P1, . . . , Pd} ⊂ P2, then I(X) = ℘1 ∩ . . . ∩ ℘d =
⊕

j≥0 I(X)j ⊂ S.

P = (p0 : p1 : p2) ! ℘ = (p1x0 − p0x1,p2x0 − p0x2)

The Hilbert function of X is the Hilbert function of S/I(X).
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Polynomial interpolation: simple points

Polynomial Interpolation Problem

Given a set of points X = {P1, . . . , Pd} in complex projective plane P2,
what is the Hilbert function of X in degree j?

Obviously, the answer depends on the position of the points.

[Geramita-Orecchia, 1981] If the points are in general position,

HFX(j) = min
{(j+2

2

)
,d

}
.

Proof. If {m1, . . . ,m(
j+2
2

)} is the standard monomial basis for Sj, then HFX(j) = rk (ma(Pb))a,b.
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Polynomial interpolation: fat points

Fat points

A fat point of multiplicity m and support at P is the 0-dim scheme given by ℘m.

We denote it by mP.

A scheme of fat points is a union of fat points, i.e., X = m1P1 + . . .+mdPd defined

by I(X) = ℘m1
1 ∩ . . . ∩ ℘

md

d .

Remark. f ∈ ℘m if and only if D(f )|P = 0, for any D ∈ C[∂0, ∂1, ∂2]≤m−1.
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Polynomial interpolation: fat points

Polynomial Interpolation Problem

Let X = m1P1 + . . .+mdPd be a scheme of fat points in P2,
what is the Hilbert function of X in degree j?

this is equivalent to asking

Given a set of points {P1, . . . , Pd} and positive integers m1, . . . ,md ,

how many curves of degree j are singular at Pi of order mi, for i = 1, . . . ,d?
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Polynomial interpolation: fat points

Remark. f ∈ ℘m if and only if D(f )|P = 0, for any D ∈ C[∂0, ∂1, ∂2]≤m−1.

Therefore, a fat point of multiplicity m in P2 imposes
(
m+1
2

)
linear equations.

If we assume X = m1P1 + . . .+mdPd to have general support, then,

the expected Hilbert function of X in degree j is

exp.HFX(j) = min

{(
j + 2

2

)
,

d∑
i=1

(
mi + 1

n

)}
.
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Polynomial interpolation: fat points

Example 1. Let X = 2P1 + . . .+ 2P5 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 5 · 3 = 0.
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Polynomial interpolation: fat points

Example 1. Let X = 2P1 + . . .+ 2P5 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 5 · 3 = 0.

There is a unique conic C passing through the points.
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Polynomial interpolation: fat points

Example 1. Let X = 2P1 + . . .+ 2P5 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 5 · 3 = 0.

There is a unique conic C passing through the points.

Hence, 2C ∈ I(X)4. By Bézout’s Theorem,

dim I(X)4 = 1 > 0 = exp.dim I(X)4.
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Polynomial interpolation: fat points

Example 2. Let X = 3P1 + 3P2 + P3 + P4 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 2 · 6− 2 = 1.
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Polynomial interpolation: fat points

Example 2. Let X = 3P1 + 3P2 + P3 + P4 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 2 · 6− 2 = 1.

The line L = P1P2 is a fixed component.
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Polynomial interpolation: fat points

Example 2. Let X = 3P1 + 3P2 + P3 + P4 ⊂ P2, with general support.

We expect to have no quartics through X.

exp.dim I(X)4 =

(
4+ 2

2

)
− 2 · 6− 2 = 1.

The line L = P1P2 is a fixed component.

If 〈C1,C2〉 = I(P1 + P2 + P2 + P4), then C1L
2,C2L

2 ∈ I(X)4,
and

dim I(X)4 = 2 > 1 = exp.dim I(X)4.
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SHGH Conjecture
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SHGH Conjecture

B. Segre 1961

Alcune questioni su insiemi finiti di punti in geometria algebrica (page 72)

”(...) in order that a complete linear system Σ of plane curves, passing through

multiple base points in general position with virtual dimension d ≥ −1 is
superabundant (and then effective, i.e., of dimension δ ≥ 0), it is necessary (but,

from examples, not sufficient) that it has some multiple fixed component.”
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SHGH Conjecture

A degree d curve C is negative for P1, . . . , Pd ∈ P2 if (multP1(C))2 + . . .+ (multPd (C))2 > d2.

[SHGH Conjecture - B. Segre, ’61; Harbourne ’85; Gimigliano ’87; Hirschowitz ’89]

If with general support and f = f b11 · · · f btt is the greatest common divisor of I(X)j. Let
N be the set of negative curves for P1, . . . , Pd . Then,

HFX(j) = min


(
j + 2

2

)
,

s∑
i=1

(
mi + 1

2

)
−

∑
i : fi∈N

(
bi
2

).

[Castelnuovo, 1891] d ≤ 9; [Alexander-Hirschowitz, 1995] m = 2 (for any Pn);

[Yang, 2007] mi ≤ 7; [Ciliberto-Miranda, 1998] mi = m ≤ 12; …and some other special cases
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A new planar interpolation problem

Problem. [Cook II - Harbourne - Migliore - Nagel, ’16]

Let Z = P1 + . . .+ Pd ⊂ Pn be a set of reduced points (non necessary with general support)

and consider the linear system Lj(Z) of curves of degree j passing through Z.

Let X be a scheme of fat points with general support,

how many conditions does X impose on Lj(Z)?

Z = ∅ is the situation of SHGH Conjecture.

We focus on X = mQ, with a Q general point
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Unexpected curves

Definition. [Cook II - Harbourne - Migliore - Nagel, ’16]

Let Z = P1 + . . .+ Pd ⊂ Pn be a set of reduced points (non necessary with general support).
We say that Z admits an unexpected curve of degree j+1 if, for general pointQ ∈ P2

dimC I(Z + jQ)j+1 > max

{
0, dimC I(Z)j+1 −

(
j + 1

2

)}
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Unexpected curves

Questions.

1. Classify the pairs (Z, j) for which Z admits an unexpected curve of degree j + 1.

[Cook II - Harbourne - Migliore - Nagel]

Example of 9 points with an unexpected cubic.

[Farnik - Galuppi - Sodomaco - Trok]

Up to isomorphism, this is the only possible

example of 9 points with an unexpected cubic.
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Unexpected curves

Questions.

2. Provide more examples.

∞
[Di Marca - Malara - Oneto]

Series of examples coming from

special line arrangements in P2.
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Line arrangements

A line arrangement is a collection of lines A = {`1, . . . , Lr}

A singular point in a line arrangement is a point where at least two lines meet

Sing(A) =
⋃

a6=b La ∩ Lb

The multiplicity of a singular point is the number of lines of A meeting at the point

m(P) = #{L ∈ A | P ∈ L}
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Dual line arrangement

Given a point P = (p0 : p1 : p2) ∈ P2, we define the dual line

LP = {p0x0 + p1x1 + p2x2 = 0}.

Given a set of points Z = {P1, . . . , Pd}, we define a dual line arrangement

AZ = {LP1 , . . . , LPd}.

A. Oneto - Planar polynomial interpolation and line arrangements 17 / 38



Introduction A new planar interpolation problem Line arrangements Motivations and Connections New examples

Splitting type

[Cook II - Harbourne - Migliore - Nagel]

Let A = {L1, . . . , Ld} be a line arrangement. Let fA = `1 · · · `d , where Li = {`i = 0} ⊂ P2.

Then we consider the derivation bundle DA defined as the kernel

0 −→ DA −→ O⊕3
P2

∇A−−→ OP2(d − 1),

where ∇A = [∂0f , ∂1f , ∂2f ].

• DA is isomorphic to (a twist of) the syzygy bundle of the Jacobian ideal

JA = (∂0f , ∂1f , ∂2f ) ⊂ C[x0, x1, x2];

• DA is a locally free sheaf of rank 2.
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Splitting type

Definition. If DA is free, i.e., DA = OP2(−a)⊕OP2(−b), we say that
A is free with splitting type (a,b).

Remark 1. In this case, the minimal free resolution of the Jacobian ideal is

0 −→ S(−(d − 1)− a)⊕ S(−(d − 1)− b) −→ S(−(d − 1))⊕3 −→ S −→ S/JA −→ 0.

Remark 2. If it is not free, we have DA|L = OP1(−a)⊕OP1(−b), on any line L. This is the
splitting type of A on L and it is constant on a open set of the dual projective plane.

In this situation, we define the splitting type of A as the splitting type on the general line.

We always have a+ b = d − 1
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Splitting type vs Unexpected curves

Theorem. [Cook II - Harbourne - Migliore - Nagel]

Let Z ⊂ P2 be a set of reduced points and let (a,b) be the splitting type of the dual

line arrangement AZ, with a ≤ b.

Then, Z admits unexpected curves if and only if

1. |Z| ≥ 2a+ 2;

2. Z does not contain 2a+ 2 collinear points.

In this case, Z admits unexpected curves of degree j + 1 if and only if

a ≤ j ≤ b− 2.
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Example [Cook II - Harbourne - Migliore - Nagel]

Z = {(1 : 0 : 0), (0 : 1 : 0),

(1 : −1 : 0), (−1 : 1 : 1), (1 : −1 : 1),

(1 : 1 : 0), (−1 : −1 : 1), (1 : 1 : 1)}.
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Example [Cook II - Harbourne - Migliore - Nagel]

fA = (x)(y)·
· (x − y)(x − y − z)(x − y + z)·
· (x + y)(x + y − z)(x + y + z)
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Example [Cook II - Harbourne - Migliore - Nagel]

fA = (x)(y)(x−y)(x−y−z)(x−y+z)(x+y)(x+y−z)(x+y+z), deg(fA) = #(A) = 8

0 −→
S(−7− 3)

⊕
S(−7− 4)

−→ S(−7)3 −→ S −→ S/JA −→ 0

The splitting type of A is (3,4) =⇒ there are no unexpected curves!
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Example [Cook II - Harbourne - Migliore - Nagel]

We add the point (0 : 0 : 1)

Z = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),

(1 : −1 : 0), (−1 : 1 : 1), (1 : −1 : 1),

(1 : 1 : 0), (−1 : −1 : 1), (1 : 1 : 1)}.
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Example [Cook II - Harbourne - Migliore - Nagel]

We add the line at infinity z = 0

fA = (x)(y)(z)·
· (x − y)(x − y − z)(x − y + z)·
· (x + y)(x + y − z)(x + y + z)

A. Oneto - Planar polynomial interpolation and line arrangements 23 / 38
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Example [Cook II - Harbourne - Migliore - Nagel]

fA = (x)(y)(z)(x−y)(x−y−z)(x−y+z)(x+y)(x+y−z)(x+y+z), deg(fA) = #(A) = 9

0 −→
S(−8− 3)

⊕
S(−8− 5)

−→ S(−8)3 −→ S −→ S/JA −→ 0

The splitting type of A is (3,5)
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Example [Cook II - Harbourne - Migliore - Nagel]

The splitting type of A is (3,5) =⇒ there is an unexpected quartic!
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Terao’s Conjecture on freeness of line arrangements

Terao’s Conjecture.

The freeness of a line arrangement depends only on its incidence lattice.
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Terao’s Conjecture on freeness of line arrangements

Proposition. [Cook II - Harbourne - Migliore - Nagel]

Let A and A′ be two line arrangements with the same incidence lattice. Assume A is

free with splitting type (a,b). Then one has:

1. A′ is free if and only if A has the same splitting type as A′;

2. If A′ is not free, then its splitting type is (a− s,b+ s), for some positive integer s.

Corollary. [Cook II - Harbourne - Migliore - Nagel]

If the splitting type of a line arrangement is a combinatorial property, then Terao’s

conjecture is true.
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Strong Lefschetz Property of Artinian algebras

Definition. An Artinian algebra A = S/I satisfies the Strong Lefschetz Property (SLP)

at range k and in degree d if, for a general linear form `, the homomorphism

×`k : Ad −→ Ad+k has maximal rank, i.e., it is either surjective or injective.

Theorem. [Cook II - Harbourne - Migliore - Nagel] Let A be a line arrangement defined by

f = `1 · · · `d and let Z be the dual configuration of points.

Then, the following are equivalent:

1. Z admits an unexpected curve of degree j + 1

2. S/(`
j+1
1 , . . . , `

j+1
d ) fails SLP in range 2 and degree j − 1.

Key fact. [Emsalem - Iarrobino ’95; Geramita ’96] For any [`i] ∈ P(S1), denote ℘i = I([`i]).

dimC[S/(`
j+1
1 , . . . , `

j+1
d , `2d+1)]j+1 = dimC[℘1 ∩ . . . ∩ ℘d ∩ ℘

j

d+1]j+1
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Simplicial line arrangements

Grünbaum, B. A catalogue of simplicial arrangements in the real projective plane,

Ars Mathematica Contemporanea 2 : 1–25, 2009.
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Supersolvable line arrangements

Definition.

A line arrangement is called supersolvable if there exists a modular point, i.e.,

∃P ∈ Sing(A) such that ∀Q ∈ Sing(A),PQ ∈ A.

non-example example

We call multiplicity of the arrangement m = m(A) = max{m(P) : P ∈ Sing(A)}.
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Supersolvable line arrangements

Lemma. Let A be a supersolvable line arrangement with d = #(A) and multiplicity m.

Then, the splitting type of A is (m− 1,d −m).

Sketch of proof.

1. If d −m = 0, i.e., A is a “star”, then prove it by induction on m.

2. If d ≥ m, then prove it by induction on d −m.

In both steps, we use the following lemma.

Lemma. [Orlik-Terao] Let A be a line arrangement and L ∈ A. Let A′ = A \ {L}. If:

i) A′ is free and has splitting type (a,b); ii) #(Sing(A) ∩ L) = b+ 1 (or a+ 1, respectively);

then, A is free with splitting type (a+ 1,b) (or (a,b+ 1), respectively).
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Supersolvable line arrangements

Theorem. [Di Marca - Malara - O.]

Let A be a supersolvable line arrangement with d = #(A) and multiplicity m. Let Z

be the dual configuration of points. Then,

Z admits unexpected curves if and only if d > 2m.

In this case, Z admits unexpected curves of degree j + 1 if and only if

m− 1 ≤ j ≤ d −m− 2.
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Supersolvable line arrangements

Proof.

By Lemma, the splitting type of A is (m− 1,d −m).

Recall characterization by [Cook II - Harbourne - Migliore - Nagel]:

i. 2a+ 2 < #(A) ii. there are no a+ 1 collinear points, i.e., m(P) < a+ 1, ∀P ∈ Sing(A)

Now:

1. if m− 1 ≤ d −m, then

i. 2(m− 1) + 2 < d ⇔ 2m < d; ii. ∀P ∈ Sing(A). m(P) ≤ (m− 1) + 1 = m X

2. if m− 1 ≥ d −m, then

i. 2(d −m) + 2 < d ⇔ d < 2m− 2;

ii. ∀P ∈ Sing(A). m(P) ≤ (d −m) + 1 = m⇒ m ≤ d −m+ 1⇒ d ≥ 2m− 1 →←
A. Oneto - Planar polynomial interpolation and line arrangements 32 / 38
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Polygonal arrangements

Hexagonal arrangement
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Polygonal arrangements

P6
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Polygonal arrangements

P6
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Polygonal arrangements

Theorem. [Di Marca - Malara - O.]

Let N be a positive integer.

1. The configuration f points dual to PN admits no unexpected curves.

2. If N is even, then the configuration of points dual to PN admits an unexpected

curve of degree N.

Proof.

In both cases, m(PN) = m(PN) = N.

1. |PN| = 2N, hence, the splitting type is (N − 1,N);

2. |PN| = 2N + 1, hence, the splitting type is (N − 1,N + 1).
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Tic-tac-toe arrangements

A tic-tac-toe arrangement of type (k, j), denoted

T j
k , is the arrangement defined by:

1. vi, i = −k, . . . , k: vertical lines x = iz;

2. hi, i = −k, . . . , k: horizontal lines y = iz;

3. di, i = −j, . . . , j: the diagonals x − y + iz = 0;

4. ei, i = −j, . . . , j:
the anti-diagonals x + y + iz = 0.

v−2 v−1 v0 v1 v2

h2

h1

h0

h−1

h−2

d0

d1

d−1

e0 e1

e−1

The tic-tac-toe arrangement of type (2, 1).
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Tic-tac-toe arrangements

Theorem. [Di Marca - Malara - O.]

The complete tic-tac-toe arrangement T j
k has an unexpected curve of degree 2(k + j + 1).

Proof.

The splitting type is (2k + 2j + 1,2k + 2j + 3).

...more examples in the (coming soon) paper!

Grazie per l’attenzione!
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